Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Chem Phys ; 160(15)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38639317

RESUMEN

Enhanced sampling algorithms are indispensable when working with highly disconnected multimodal distributions. An important application of these is the conformational exploration of particular internal degrees of freedom of molecular systems. However, despite the existence of many commonly used enhanced sampling algorithms to explore these internal motions, they often rely on system-dependent parameters, which negatively impact efficiency and reproducibility. Here, we present fully adaptive simulated tempering (FAST), a variation of the irreversible simulated tempering algorithm, which continuously optimizes the number, parameters, and weights of intermediate distributions to achieve maximally fast traversal over a space defined by the change in a predefined thermodynamic control variable such as temperature or an alchemical smoothing parameter. This work builds on a number of previously published methods, such as sequential Monte Carlo, and introduces a novel parameter optimization procedure that can, in principle, be used in any expanded ensemble algorithms. This method is validated by being applied on a number of different molecular systems with high torsional kinetic barriers. We also consider two different soft-core potentials during the interpolation procedure and compare their performance. We conclude that FAST is a highly efficient algorithm, which improves simulation reproducibility and can be successfully used in a variety of settings with the same initial hyperparameters.

2.
J Chem Inf Model ; 62(10): 2561-2570, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35508076

RESUMEN

Optimization of binding affinities for ligands to their target protein is a primary objective in rational drug discovery. Herein, we report on a collaborative study that evaluates various compounds designed to bind to the SET and MYND domain-containing protein 3 (SMYD3). SMYD3 is a histone methyltransferase and plays an important role in transcriptional regulation in cell proliferation, cell cycle, and human carcinogenesis. Experimental measurements using the scintillation proximity assay show that the distributions of binding free energies from a large number of independent measurements exhibit non-normal properties. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to predict the binding free energies and to provide a detailed chemical insight into the nature of ligand-protein binding. Our results show that the 1-trajectory ESMACS protocol works well for the set of ligands studied here. Although one unexplained outlier exists, we obtain excellent statistical ranking across the set of compounds from the ESMACS protocol and good agreement between calculations and experiments for the relative binding free energies from the TIES protocol. ESMACS and TIES are again found to be powerful protocols for the accurate comparison of the binding free energies.


Asunto(s)
Amidas , Isoxazoles , Amidas/farmacología , N-Metiltransferasa de Histona-Lisina/química , Humanos , Ligandos , Unión Proteica , Proteínas/metabolismo , Termodinámica
3.
J Chem Inf Model ; 60(3): 1528-1539, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-31910338

RESUMEN

Identification of correct protein-ligand binding poses is important in structure-based drug design and crucial for the evaluation of protein-ligand binding affinity. Protein-ligand coordinates are commonly obtained from crystallography experiments that provide a static model of an ensemble of conformations. Binding pose metadynamics (BPMD) is an enhanced sampling method that allows for an efficient assessment of ligand stability in solution. Ligand poses that are unstable under the bias of the metadynamics simulation are expected to be infrequently occupied in the energy landscape, thus making minimal contributions to the binding affinity. Here, the robustness of the method is studied using crystal structures with ligands known to be incorrectly modeled, as well as 63 structurally diverse crystal structures with ligand fit to electron density from the Twilight database. Results show that BPMD can successfully differentiate compounds whose binding pose is not supported by the electron density from those with well-defined electron density.


Asunto(s)
Diseño de Fármacos , Proteínas , Sitios de Unión , Cristalografía por Rayos X , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica
4.
J Chem Inf Model ; 60(4): 1917-1921, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32092258

RESUMEN

ProtoCaller is a Python library distributed through Anaconda which automates relative protein-ligand binding free energy calculations in GROMACS. It links a number of popular specialized tools used to perform protein setup and parametrization, such as PDB2PQR, Modeller, and AmberTools. ProtoCaller supports commonly used AMBER force fields with additional cofactor parameters, and AM1-BCC is used to derive ligand charges. ProtoCaller also comes with an extensive PDB parser, an enhanced maximum common substructure algorithm providing improved ligand-ligand mapping, and a light GROMACS wrapper for running multiple molecular dynamics simulations. ProtoCaller is highly relevant to most researchers in the field of biomolecular simulation, allowing a customizable balance between automation and user intervention.


Asunto(s)
Simulación de Dinámica Molecular , Programas Informáticos , Automatización , Entropía , Ligandos
5.
J Chem Inf Model ; 54(10): 2636-46, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25244105

RESUMEN

There is an ever increasing resource in terms of both structural information and activity data for many protein targets. In this paper we describe OOMMPPAA, a novel computational tool designed to inform compound design by combining such data. OOMMPPAA uses 3D matched molecular pairs to generate 3D ligand conformations. It then identifies pharmacophoric transformations between pairs of compounds and associates them with their relevant activity changes. OOMMPPAA presents this data in an interactive application providing the user with a visual summary of important interaction regions in the context of the binding site. We present validation of the tool using openly available data for CDK2 and a GlaxoSmithKline data set for a SAM-dependent methyl-transferase. We demonstrate OOMMPPAA's application in optimizing both potency and cell permeability and use OOMMPPAA to highlight nuanced and cross-series SAR. OOMMPPAA is freely available to download at http://oommppaa.sgc.ox.ac.uk/OOMMPPAA/ .


Asunto(s)
Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Metiltransferasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Programas Informáticos , Sitios de Unión , Quinasa 2 Dependiente de la Ciclina/química , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Humanos , Ligandos , Metiltransferasas/química , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , S-Adenosilmetionina/química , Bibliotecas de Moléculas Pequeñas/síntesis química
6.
J Med Chem ; 67(12): 10464-10489, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38866424

RESUMEN

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.


Asunto(s)
Administración Intravenosa , Animales , Administración Oral , Ratones , Relación Estructura-Actividad , Humanos , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Estructura Molecular
7.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37967462

RESUMEN

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Dominios Proteicos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Biochem Soc Trans ; 40(2): 394-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22435818

RESUMEN

Our previously derived models of the active state of the ß2-adrenergic receptor are compared with recently published X-ray crystallographic structures of activated GPCRs (G-protein-coupled receptors). These molecular dynamics-based models using experimental data derived from biophysical experiments on activation were used to restrain the receptor to an active state that gave high enrichment for agonists in virtual screening. The ß2-adrenergic receptor active model and X-ray structures are in good agreement over both the transmembrane region and the orthosteric binding site, although in some regions the active model is more similar to the active rhodopsin X-ray structures. The general features of the microswitches were well reproduced, but with minor differences, partly because of the unexpected X-ray results for the rotamer toggle switch. In addition, most of the interacting residues between the receptor and the G-protein were identified. This analysis of the modelling has also given important additional insight into GPCR dimerization: re-analysis of results on photoaffinity analogues of rhodopsin provided additional evidence that TM4 (transmembrane helix 4) resides at the dimer interface and that ligands such as bivalent ligands may pass between the mobile helices. A comparison, and discussion, is also carried out between the use of implicit and explicit solvent for active-state modelling.


Asunto(s)
Modelos Biológicos , Multimerización de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Humanos , Simulación de Dinámica Molecular , Receptores Acoplados a Proteínas G/química
9.
J Chem Theory Comput ; 18(6): 3894-3910, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35588256

RESUMEN

The sampling problem is one of the most widely studied topics in computational chemistry. While various methods exist for sampling along a set of reaction coordinates, many require system-dependent hyperparameters to achieve maximum efficiency. In this work, we present an alchemical variation of adaptive sequential Monte Carlo (SMC), an irreversible importance resampling method that is part of a well-studied class of methods that have been used in various applications but have been underexplored in computational biophysics. Afterward, we apply alchemical SMC on a variety of test cases, including torsional rotations of solvated ligands (butene and a terphenyl derivative), translational and rotational movements of protein-bound ligands, and protein side chain rotation coupled to the ligand degrees of freedom (T4-lysozyme, protein tyrosine phosphatase 1B, and transforming growth factor ß). We find that alchemical SMC is an efficient way to explore targeted degrees of freedom and can be applied to a variety of systems using the same hyperparameters to achieve a similar performance. Alchemical SMC is a promising tool for preparatory exploration of systems where long-timescale sampling of the entire system can be traded off against short-timescale sampling of a particular set of degrees of freedom over a population of conformers.


Asunto(s)
Proteínas , Ligandos , Método de Montecarlo
10.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36378954

RESUMEN

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Asunto(s)
Lisina , Factores de Transcripción , Humanos , Lisina/metabolismo , Ligandos , Dominios Proteicos , Histonas/metabolismo
11.
Proteins ; 79(5): 1441-57, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21337626

RESUMEN

The recent publication of several G protein-coupled receptor (GPCR) structures has increased the information available for homology modeling inactive class A GPCRs. Moreover, the opsin crystal structure shows some active features. We have therefore combined information from these two sources to generate an extensively validated model of the active conformation of the ß(2)-adrenergic receptor. Experimental information on fully active GPCRs from zinc binding studies, site-directed spin labeling, and other spectroscopic techniques has been used in molecular dynamics simulations. The observed conformational changes reside mainly in transmembrane helix 6 (TM6), with additional small but significant changes in TM5 and TM7. The active model has been validated by manual docking and is in agreement with a large amount of experimental work, including site-directed mutagenesis information. Virtual screening experiments show that the models are selective for ß-adrenergic agonists over other GPCR ligands, for (R)- over (S)-ß-hydroxy agonists and for ß(2)-selective agonists over ß(1)-selective agonists. The virtual screens reproduce interactions similar to those generated by manual docking. The C-terminal peptide from a model of the stimulatory G protein, readily docks into the active model in a similar manner to which the C-terminal peptide from transducin, docks into opsin, as shown in a recent opsin crystal structure. This GPCR-G protein model has been used to explain site-directed mutagenesis data on activation. The agreement with experiment suggests a robust model of an active state of the ß(2)-adrenergic receptor has been produced. The methodology used here should be transferable to modeling the active state of other GPCRs.


Asunto(s)
Simulación de Dinámica Molecular , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacología , Antagonistas de Receptores Adrenérgicos beta 2/farmacología , Animales , Sitios de Unión , Dominio Catalítico , Bovinos , Humanos , Enlace de Hidrógeno , Ligandos , Mutagénesis Sitio-Dirigida , Opsinas/química , Conformación Proteica , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Zinc/metabolismo
12.
J Chem Theory Comput ; 17(3): 1806-1821, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33534995

RESUMEN

Binding free energy calculations using alchemical free energy (AFE) methods are widely considered to be the most rigorous tool in the computational drug discovery arsenal. Despite this, the calculations suffer from accuracy, precision, and reproducibility issues. In this publication, we perform a high-throughput study of more than a thousand AFE calculations, utilizing over 220 µs of total sampling time, on three different protein systems to investigate the impact of the initial crystal structure on the resulting binding free energy values. We also consider the influence of equilibration time and discover that the initial crystal structure can have a significant effect on free energy values obtained at short timescales that can manifest itself as a free energy difference of more than 1 kcal/mol. At longer timescales, these differences are largely overtaken by important rare events, such as torsional ligand motions, typically resulting in a much higher uncertainty in the obtained values. This work emphasizes the importance of rare event sampling and long-timescale dynamics in free energy calculations even for routinely performed alchemical perturbations. We conclude that an optimal protocol should not only concentrate computational resources on achieving convergence in the alchemical coupling parameter (λ) space but also on longer simulations and multiple repeats.

13.
J Med Chem ; 64(15): 10742-10771, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34232650

RESUMEN

Domain-specific BET bromodomain ligands represent an attractive target for drug discovery with the potential to unlock the therapeutic benefits of antagonizing these proteins without eliciting the toxicological aspects seen with pan-BET inhibitors. While we have reported several distinct classes of BD2 selective compounds, namely, GSK620, GSK549, and GSK046, only GSK046 shows high aqueous solubility. Herein, we describe the lead optimization of a further class of highly soluble compounds based upon a picolinamide chemotype. Focusing on achieving >1000-fold selectivity for BD2 over BD1 ,while retaining favorable physical chemical properties, compound 36 was identified as being 2000-fold selective for BD2 over BD1 (Brd4 data) with >1 mg/mL solubility in FaSSIF media. 36 represents a valuable new in vivo ready molecule for the exploration of the BD2 phenotype.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Piridinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Piridinas/química , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
14.
J Med Chem ; 64(15): 10806-10833, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34251219

RESUMEN

Second-generation bromodomain and extra terminal (BET) inhibitors, which selectively target one of the two bromodomains in the BET proteins, have begun to emerge in the literature. These inhibitors aim to help determine the roles and functions of each domain and assess whether they can demonstrate an improved safety profile in clinical settings compared to pan-BET inhibitors. Herein, we describe the discovery of a novel BET BD2-selective chemotype using a structure-based drug design from a hit identified by DNA-encoded library technologies, showing a structural differentiation from key previously reported greater than 100-fold BD2-selective chemotypes GSK620, GSK046, and ABBV-744. Following a structure-based hypothesis for the selectivity and optimization of the physicochemical properties of the series, we identified 60 (GSK040), an in vitro ready and in vivo capable BET BD2-inhibitor of unprecedented selectivity (5000-fold) against BET BD1, excellent selectivity against other bromodomains, and good physicochemical properties. This novel chemical probe can be added to the toolbox used in the advancement of epigenetics research.


Asunto(s)
ADN/química , Descubrimiento de Drogas , Proteínas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Humanos , Estructura Molecular , Dominios Proteicos/efectos de los fármacos , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
15.
J Med Chem ; 64(6): 3249-3281, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33662213

RESUMEN

A number of reports have recently been published describing the discovery and optimization of bromo and extraterminal inhibitors which are selective for the second bromodomain (BD2); these include our own work toward GSK046 (3) and GSK620 (5). This paper describes our approach to mitigating the genotoxicity risk of GSK046 by replacement of the acetamide functionality with a heterocyclic ring. This was followed by a template-hopping and hybridization approach, guided by structure-based drug design, to incorporate learnings from other BD2-selective series, optimize the vector for the amide region, and explore the ZA cleft, leading to the identification of potent, selective, and bioavailable compounds 28 (GSK452), 39 (GSK737), and 36 (GSK217).


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Dominios Proteicos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Factores de Transcripción/química , Factores de Transcripción/metabolismo
16.
J Med Chem ; 64(15): 10772-10805, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34255512

RESUMEN

The profound efficacy of pan-BET inhibitors is well documented, but these epigenetic agents have shown pharmacology-driven toxicity in oncology clinical trials. The opportunity to identify inhibitors with an improved safety profile by selective targeting of a subset of the eight bromodomains of the BET family has triggered extensive medicinal chemistry efforts. In this article, we disclose the identification of potent and selective drug-like pan-BD2 inhibitors such as pyrazole 23 (GSK809) and furan 24 (GSK743) that were derived from the pyrrole fragment 6. We transpose the key learnings from a previous pyridone series (GSK620 2 as a representative example) to this novel class of inhibitors, which are characterized by significantly improved solubility relative to our previous research.


Asunto(s)
Furanos/farmacología , Proteínas/antagonistas & inhibidores , Pirazoles/farmacología , Relación Dosis-Respuesta a Droga , Furanos/química , Humanos , Estructura Molecular , Proteínas/metabolismo , Pirazoles/química , Relación Estructura-Actividad
17.
Bioorg Med Chem Lett ; 20(4): 1368-72, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20097071

RESUMEN

A pharmacophore model was built, based on known CGRP receptor antagonists, and this was used to aid the identification of novel leads. Analogues were designed, modelled and synthesised which incorporated alternative 'LHS' fragments linked via either an amide or urea to a privileged 'RHS' fragment commonly found in CGRP receptor antagonists. As a result a novel series of oxadiazole CGRP receptor antagonists has been identified and the subsequent optimisation to enhance both potency and bioavailability is presented.


Asunto(s)
Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , Diseño de Fármacos , Trastornos Migrañosos/tratamiento farmacológico , Oxadiazoles/síntesis química , Oxadiazoles/uso terapéutico , Administración Oral , Animales , Modelos Moleculares , Estructura Molecular , Oxadiazoles/química , Ratas
18.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 1): 40-46, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31929185

RESUMEN

Direct soaking of protein crystals with small-molecule fragments grouped into complementary clusters is a useful technique when assessing the potential of a new crystal system to support structure-guided drug discovery. It provides a robustness check prior to any extensive crystal screening, a double check for assay binding cutoffs and structural data for binding pockets that may or may not be picked out in assay measurements. The structural output from this technique for three novel fragment molecules identified to bind to the antibacterial target Acinetobacter baumannii undecaprenyl pyrophosphate synthase are reported, and the different physicochemical requirements of a successful antibiotic are compared with traditional medicines.


Asunto(s)
Acinetobacter baumannii/enzimología , Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Cristalografía por Rayos X/métodos , Descubrimiento de Drogas , Transferasas Alquil y Aril/aislamiento & purificación , Antibacterianos/química , Proteínas Bacterianas/aislamiento & purificación , Dominio Catalítico , Cristalización , Escherichia coli , Expresión Génica/genética , Modelos Moleculares , Conformación Proteica , Difracción de Rayos X
19.
ACS Med Chem Lett ; 11(8): 1581-1587, 2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32832027

RESUMEN

Pan-BET inhibitors have shown profound efficacy in a number of in vivo preclinical models and have entered the clinic in oncology trials where adverse events have been reported. These inhibitors interact equipotently with the eight bromodomains of the BET family of proteins. To better understand the contribution of each domain to their efficacy and to improve from their safety profile, selective inhibitors are required. This Letter discloses the profile of GSK973, a highly selective inhibitor of the second bromodomains of the BET proteins that has undergone extensive preclinical in vitro and in vivo characterization.

20.
J Med Chem ; 63(17): 9093-9126, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32702236

RESUMEN

The profound efficacy, yet associated toxicity of pan-BET inhibitors is well documented. The possibility of an ameliorated safety profile driven by significantly selective (>100-fold) inhibition of a subset of the eight bromodomains is enticing, but challenging given the close homology. Herein, we describe the X-ray crystal structure-directed optimization of a novel weak fragment ligand with a pan-second bromodomain (BD2) bias, to potent and highly BD2 selective inhibitors. A template hopping approach, enabled by our parallel research into an orthogonal template (15, GSK046), was the basis for the high selectivity observed. This culminated in two tool molecules, 20 (GSK620) and 56 (GSK549), which showed an anti-inflammatory phenotype in human whole blood, confirming their cellular target engagement. Excellent broad selectivity, developability, and in vivo oral pharmacokinetics characterize these tools, which we hope will be of broad utility to the field of epigenetics research.


Asunto(s)
Antiinflamatorios/química , Ligandos , Factores de Transcripción/antagonistas & inhibidores , Administración Oral , Amidas/química , Amidas/metabolismo , Amidas/farmacocinética , Animales , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacocinética , Sitios de Unión , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Perros , Semivida , Humanos , Enlace de Hidrógeno , Masculino , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Ratas Wistar , Relación Estructura-Actividad , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA