Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
EMBO J ; 42(22): e114334, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37781931

RESUMEN

Sequences that form DNA secondary structures, such as G-quadruplexes (G4s) and intercalated-Motifs (iMs), are abundant in the human genome and play various physiological roles. However, they can also interfere with replication and threaten genome stability. Multiple lines of evidence suggest G4s inhibit replication, but the underlying mechanism remains unclear. Moreover, evidence of how iMs affect the replisome is lacking. Here, we reconstitute replication of physiologically derived structure-forming sequences to find that a single G4 or iM arrest DNA replication. Direct single-molecule structure detection within solid-state nanopores reveals structures form as a consequence of replication. Combined genetic and biophysical characterisation establishes that structure stability and probability of structure formation are key determinants of replisome arrest. Mechanistically, replication arrest is caused by impaired synthesis, resulting in helicase-polymerase uncoupling. Significantly, iMs also induce breakage of nascent DNA. Finally, stalled forks are only rescued by a specialised helicase, Pif1, but not Rrm3, Sgs1, Chl1 or Hrq1. Altogether, we provide a mechanism for quadruplex structure formation and resolution during replication and highlight G4s and iMs as endogenous sources of replication stress.


Asunto(s)
ADN , G-Cuádruplex , Humanos , Genoma Humano , Nucleotidiltransferasas , Replicación del ADN
2.
Nucleic Acids Res ; 46(12): 5886-5893, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29800233

RESUMEN

Previous computational studies have shown that Cu+ can act as a substitute for H+ to support formation of cytosine (C) dimers with similar conformation to the hemi-protonated base pair found in i-motif DNA. Through a range of biophysical methods, we provide experimental evidence to support the hypothesis that Cu+ can mediate C-C base pairing in i-motif DNA and preserve i-motif structure. These effects can be reversed using a metal chelator, or exposure to ambient oxygen in the air that drives oxidation of Cu+ to Cu2+, a comparatively weak ligand. Herein, we present a dynamic and redox-sensitive system for conformational control of an i-motif forming DNA sequence in response to copper cations.


Asunto(s)
Cobre/química , ADN/química , Emparejamiento Base , Cationes , Citosina/química , Modelos Moleculares , Motivos de Nucleótidos , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA