Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(2): e1010011, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35134055

RESUMEN

Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor.


Asunto(s)
Proteínas de Peces/genética , Lenguado/genética , Recombinación Genética , Procesos de Determinación del Sexo , Animales , Elementos Transponibles de ADN , Embrión no Mamífero , Femenino , Lenguado/embriología , Expresión Génica , Genoma , Masculino , Meiosis , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos , Cromosomas Sexuales , Cromosoma Y
2.
Genome Res ; 31(5): 789-798, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33875482

RESUMEN

The genomes of eukaryotes are full of parasitic sequences known as transposable elements (TEs). Here, we report the discovery of a putative giant tyrosine-recombinase-mobilized DNA transposon, Enterprise, from the model fungus Podospora anserina Previously, we described a large genomic feature called the Spok block which is notable due to the presence of meiotic drive genes of the Spok gene family. The Spok block ranges from 110 kb to 247 kb and can be present in at least four different genomic locations within P. anserina, despite what is an otherwise highly conserved genome structure. We propose that the reason for its varying positions is that the Spok block is not only capable of meiotic drive but is also capable of transposition. More precisely, the Spok block represents a unique case where the Enterprise has captured the Spoks, thereby parasitizing a resident genomic parasite to become a genomic hyperparasite. Furthermore, we demonstrate that Enterprise (without the Spoks) is found in other fungal lineages, where it can be as large as 70 kb. Lastly, we provide experimental evidence that the Spok block is deleterious, with detrimental effects on spore production in strains which carry it. This union of meiotic drivers and a transposon has created a selfish element of impressive size in Podospora, challenging our perception of how TEs influence genome evolution and broadening the horizons in terms of what the upper limit of transposition may be.


Asunto(s)
Podospora , Elementos Transponibles de ADN/genética , Humanos , Podospora/genética
3.
Proc Natl Acad Sci U S A ; 117(39): 24359-24368, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32938798

RESUMEN

The mechanisms underlying sex determination are astonishingly plastic. Particularly the triggers for the molecular machinery, which recalls either the male or female developmental program, are highly variable and have evolved independently and repeatedly. Fish show a huge variety of sex determination systems, including both genetic and environmental triggers. The advent of sex chromosomes is assumed to stabilize genetic sex determination. However, because sex chromosomes are notoriously cluttered with repetitive DNA and pseudogenes, the study of their evolution is hampered. Here we reconstruct the birth of a Y chromosome present in the Atlantic herring. The region is tiny (230 kb) and contains only three intact genes. The candidate male-determining gene BMPR1BBY encodes a truncated form of a BMP1B receptor, which originated by gene duplication and translocation and underwent rapid protein evolution. BMPR1BBY phosphorylates SMADs in the absence of ligand and thus has the potential to induce testis formation. The Y region also contains two genes encoding subunits of the sperm-specific Ca2+ channel CatSper required for male fertility. The herring Y chromosome conforms with a characteristic feature of many sex chromosomes, namely, suppressed recombination between a sex-determining factor and genes that are beneficial for the given sex. However, the herring Y differs from other sex chromosomes in that suppression of recombination is restricted to an ∼500-kb region harboring the male-specific and sex-associated regions. As a consequence, any degeneration on the herring Y chromosome is restricted to those genes located in the small region affected by suppressed recombination.


Asunto(s)
Peces/genética , Cromosomas Sexuales/genética , Animales , Evolución Molecular , Femenino , Proteínas de Peces/genética , Peces/fisiología , Duplicación de Gen , Masculino , Reproducción
4.
Mol Biol Evol ; 38(8): 3126-3143, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33823537

RESUMEN

Evidence is accumulating that gene flow commonly occurs between recently diverged species, despite the existence of barriers to gene flow in their genomes. However, we still know little about what regions of the genome become barriers to gene flow and how such barriers form. Here, we compare genetic differentiation across the genomes of bumblebee species living in sympatry and allopatry to reveal the potential impact of gene flow during species divergence and uncover genetic barrier loci. We first compared the genomes of the alpine bumblebee Bombus sylvicola and a previously unidentified sister species living in sympatry in the Rocky Mountains, revealing prominent islands of elevated genetic divergence in the genome that colocalize with centromeres and regions of low recombination. This same pattern is observed between the genomes of another pair of closely related species living in allopatry (B. bifarius and B. vancouverensis). Strikingly however, the genomic islands exhibit significantly elevated absolute divergence (dXY) in the sympatric, but not the allopatric, comparison indicating that they contain loci that have acted as barriers to historical gene flow in sympatry. Our results suggest that intrinsic barriers to gene flow between species may often accumulate in regions of low recombination and near centromeres through processes such as genetic hitchhiking, and that divergence in these regions is accentuated in the presence of gene flow.


Asunto(s)
Abejas/genética , Flujo Génico , Genoma de los Insectos , Aislamiento Reproductivo , Simpatría , Animales , Evolución Molecular , Recombinación Genética
5.
Genome Res ; 29(11): 1919-1928, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31649060

RESUMEN

The Atlantic herring is a model species for exploring the genetic basis for ecological adaptation, due to its huge population size and extremely low genetic differentiation at selectively neutral loci. However, such studies have so far been hampered because of a highly fragmented genome assembly. Here, we deliver a chromosome-level genome assembly based on a hybrid approach combining a de novo Pacific Biosciences (PacBio) assembly with Hi-C-supported scaffolding. The assembly comprises 26 autosomes with sizes ranging from 12.4 to 33.1 Mb and a total size, in chromosomes, of 726 Mb, which has been corroborated by a high-resolution linkage map. A comparison between the herring genome assembly with other high-quality assemblies from bony fishes revealed few inter-chromosomal but frequent intra-chromosomal rearrangements. The improved assembly facilitates analysis of previously intractable large-scale structural variation, allowing, for example, the detection of a 7.8-Mb inversion on Chromosome 12 underlying ecological adaptation. This supergene shows strong genetic differentiation between populations. The chromosome-based assembly also markedly improves the interpretation of previously detected signals of selection, allowing us to reveal hundreds of independent loci associated with ecological adaptation.


Asunto(s)
Mapeo Cromosómico , Peces/genética , Genoma , Adaptación Fisiológica/genética , Animales , Selección Genética
6.
J Virol ; 95(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239457

RESUMEN

We have used the Nanopore long-read sequencing platform to demonstrate how amazingly complex the human adenovirus type 2 (Ad2) transcriptome is with a flexible splicing machinery producing a range of novel mRNAs both from the early and late transcription units. In total we report more than 900 alternatively spliced mRNAs produced from the Ad2 transcriptome whereof more than 850 are novel mRNAs. A surprising finding was that more than 50% of all E1A transcripts extended upstream of the previously defined transcriptional start site. The novel start sites mapped close to the inverted terminal repeat (ITR) and within the E1A enhancer region. We speculate that novel promoters or enhancer driven transcription, so-called eRNA transcription, is responsible for producing these novel mRNAs. Their existence was verified by a peptide in the Ad2 proteome that was unique for the E1A ITR mRNA. Although we show a high complexity of alternative splicing from most early and late regions, the E3 region was by far the most complex when expressed at late times of infection. More than 400 alternatively spliced mRNAs were observed in this region alone. These mRNAs included extended L4 mRNAs containing E3 and L5 sequences and readthrough mRNAs combining E3 and L5 sequences. Our findings demonstrate that the virus has a remarkable capacity to produce novel exon combinations, which will offer the virus an evolutionary advantage to change the gene expression repertoire and protein production in an evolving environment.IMPORTANCE Work in the adenovirus system led to the groundbreaking discovery of RNA splicing and alternative RNA splicing in 1977. These mechanisms are essential in mammalian evolution by increasing the coding capacity of a genome. Here, we have used a long-read sequencing technology to characterize the complexity of human adenovirus pre-mRNA splicing in detail. It is mindboggling that the viral genome, which only houses around 36,000 bp, not being much larger than a single cellular gene, generates more than 900 alternatively spliced mRNAs. Recently, adenoviruses have been used as the backbone in several promising SARS-CoV-2 vaccines. Further improvement of adenovirus-based vaccines demands that the virus can be tamed into an innocent carrier of foreign genes. This requires a full understanding of the components that govern adenovirus replication and gene expression.

7.
Mol Ecol ; 31(4): 1111-1127, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34837435

RESUMEN

Over the last six decades, populations of the bumblebees Bombus sylvicola and Bombus balteatus in Colorado have experienced decreases in tongue length, a trait important for plant-pollinator mutualisms. It has been hypothesized that this observation reflects selection resulting from shifts in floral composition under climate change. Here we used morphometrics and population genomics to determine whether morphological change is ongoing, investigate the genetic basis of morphological variation, and analyse population structure in these populations. We generated a genome assembly of B. balteatus. We then analysed whole-genome sequencing data and morphometric measurements of 580 samples of both species from seven high-altitude localities. Out of 281 samples originally identified as B. sylvicola, 67 formed a separate genetic cluster comprising a newly-discovered cryptic species ("incognitus"). However, an absence of genetic structure within species suggests that gene flow is common between mountains. We found a significant decrease in tongue length between bees collected between 2012-2014 and in 2017, indicating that morphological shifts are ongoing. We did not discover any genetic associations with tongue length, but a SNP related to production of a proteolytic digestive enzyme was implicated in body size variation. We identified evidence of covariance between kinship and both tongue length and body size, which is suggestive of a genetic component of these traits, although it is possible that shared environmental effects between colonies are responsible. Our results provide evidence for ongoing modification of a morphological trait important for pollination and indicate that this trait probably has a complex genetic and environmental basis.


Asunto(s)
Flujo Génico , Polinización , Animales , Abejas/genética , Flujo Génico/genética , Genómica , Fenotipo , Lengua
8.
Proc Natl Acad Sci U S A ; 116(12): 5633-5642, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30819892

RESUMEN

Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.


Asunto(s)
Lagartos/genética , Pigmentación de la Piel/genética , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/fisiología , Animales , Carotenoides/genética , Carotenoides/metabolismo , Color , Dioxigenasas/genética , Lagartos/metabolismo , Pigmentación/genética , Polimorfismo Genético/genética , Pterinas/metabolismo
9.
FASEB J ; 33(1): 88-100, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957057

RESUMEN

Zinc finger BED domain containing protein 6 ( Zbed6) has evolved from a domesticated DNA transposon and encodes a transcription factor unique to placental mammals. The aim of the present study was to investigate further the role of ZBED6 in insulin-producing cells, using mouse MIN6 cells, and to evaluate the effects of Zbed6 knockdown on basal ß-cell functions, such as morphology, transcriptional regulation, insulin content, and release. Zbed6-silenced cells and controls were characterized with a range of methods, including RNA sequencing, chromatin immunoprecipitation sequencing, insulin content and release, subplasma membrane Ca2+ measurements, cAMP determination, and morphologic studies. More than 700 genes showed differential expression in response to Zbed6 knockdown, which was paralleled by increased capacity to generate cAMP, as well as by augmented subplasmalemmal calcium concentration and insulin secretion in response to glucose stimulation. We identified >4000 putative ZBED6-binding sites in the MIN6 genome, with an enrichment of ZBED6 sites at upregulated genes, such as the ß-cell transcription factors v-maf musculoaponeurotic fibrosarcoma oncogene homolog A and Nk6 homeobox 1. We also observed altered morphology/growth patterns, as indicated by increased cell clustering, and in the appearance of axon-like Neurofilament, medium polypeptide and tubulin ß 3, class III-positive protrusions. We conclude that ZBED6 acts as a transcriptional regulator in MIN6 cells and that its activity suppresses insulin production, cell aggregation, and neuronal-like differentiation.-Wang, X., Jiang, L., Wallerman, O., Younis, S., Yu, Q., Klaesson, A., Tengholm, A., Welsh, N., Andersson, L. ZBED6 negatively regulates insulin production, neuronal differentiation, and cell aggregation in MIN6 cells.


Asunto(s)
Diferenciación Celular , Células Secretoras de Insulina/patología , Insulina/metabolismo , Insulinoma/patología , Neuronas/patología , Neoplasias Pancreáticas/patología , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Adhesión Celular , Agregación Celular , Regulación de la Expresión Génica , Silenciador del Gen , Glucosa/administración & dosificación , Secuenciación de Nucleótidos de Alto Rendimiento , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Ratones , Neuronas/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/genética , Transcripción Genética , Células Tumorales Cultivadas
10.
Mol Ecol ; 28(6): 1358-1374, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30431193

RESUMEN

Chromosomal inversions can facilitate local adaptation in the presence of gene flow by suppressing recombination between well-adapted native haplotypes and poorly adapted migrant haplotypes. East African mountain populations of the honeybee Apis mellifera are highly divergent from neighbouring lowland populations at two extended regions in the genome, despite high similarity in the rest of the genome, suggesting that these genomic regions harbour inversions governing local adaptation. Here, we utilize a new highly contiguous assembly of the honeybee genome to characterize these regions. Using whole-genome sequencing data from 55 highland and lowland bees, we find that the highland haplotypes at both regions are present at high frequencies in three independent highland populations but extremely rare elsewhere. The boundaries of both divergent regions are characterized by regions of high homology with each other positioned in opposite orientations and contain highly repetitive, long inverted repeats with homology to transposable elements. These regions are likely to represent inversion breakpoints that participate in nonallelic homologous recombination. Using long-read data, we confirm that the lowland samples are contiguous across breakpoint regions. We do not find evidence for disruption of functional sequence by these breakpoints, which suggests that the inversions are likely maintained due to their allelic content conferring local adaptation in highland environments. Finally, we identify a third divergent genomic region, which contains highly divergent segregating haplotypes that also may contain inversion variants under selection. The results add to a growing body of evidence indicating the importance of chromosomal inversions in local adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Abejas/genética , Inversión Cromosómica/genética , Animales , Genómica , Haplotipos/genética
11.
Proc Natl Acad Sci U S A ; 112(25): 7743-8, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26056301

RESUMEN

The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-ß, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.


Asunto(s)
Ciclo Celular/genética , División Celular/genética , Neoplasias Colorrectales/patología , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Neoplasias Colorrectales/genética , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Represoras , Factores de Transcripción/genética , Transcriptoma
12.
J Allergy Clin Immunol ; 140(2): 474-485, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28108335

RESUMEN

BACKGROUND: Mast cells are key effector cells in allergic reactions. When activated to degranulate, they release a plethora of bioactive compounds from their secretory granules, including mast cell-restricted proteases such as tryptase. In a previous study, we showed that tryptase, in addition to its intragranular location, can be found within the nuclei of mast cells where it truncates core histones at their N-terminal ends. OBJECTIVE: Considering that the N-terminal portions of the core histones constitute sites for posttranslational modifications of major epigenetic impact, we evaluated whether histone truncation by tryptase could have an impact on epigenetic events in mast cells. METHODS: Mast cells were cultured from wild-type and tryptase null mice, followed by an assessment of their profile of epigenetic histone modifications and their phenotypic characteristics. RESULTS: We show that tryptase truncates nucleosomal histone 3 and histone 2B (H2B) and that its absence results in accumulation of the epigenetic mark, lysine 5-acetylated H2B. Intriguingly, the accumulation of lysine 5-acetylated H2B was cell age-dependent and was associated with a profound upregulation of markers of non-mast cell lineages, loss of proliferative control, chromatin remodeling as well as extensive morphological alterations. CONCLUSIONS: These findings introduce tryptase-catalyzed histone clipping as a novel epigenetic regulatory mechanism, which in the mast cell context may be crucial for maintaining cellular identity.


Asunto(s)
Histonas/metabolismo , Mastocitos/metabolismo , Triptasas/metabolismo , Acetilación , Ácidos Anacárdicos/farmacología , Animales , Catepsina G/genética , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica , Inhibidores de Histona Desacetilasas/farmacología , Lisina/metabolismo , Mastocitos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteoglicanos/genética , Triptasas/genética , Proteínas de Transporte Vesicular/genética
13.
Hepatol Res ; 47(8): 826-830, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27577861

RESUMEN

AIM: Infection by hepatitis C virus (HCV) can result in the development of liver fibrosis and may eventually progress into cirrhosis and hepatocellular carcinoma. However, the molecular mechanisms for this process are not fully known. Several genome-wide association studies have been carried out to pinpoint causative variants in HCV-infected patient cohorts, but these variants are usually not the functional ones. The aim of this study was to identify the regulatory single nucleotide polymorphism associated with the risk of HCV-induced liver fibrosis and elucidate its molecular mechanism. METHODS: We utilized a bioinformatics approach to identify a non-coding regulatory variant, located in an intron of the MERTK gene, based on differential transcription factor binding between the alleles. We validated the results using expression reporter assays and electrophoresis mobility shift assays. RESULTS: Chromatin immunoprecipitation sequencing indicated that transcription factor(s) bind stronger to the A allele of rs6726639. Electrophoresis mobility shift assays supported these findings and suggested that the transcription factor is interferon regulatory factor 1 (IRF1). Luciferase report assays showed lower enhancer activity from the A allele and that IRF1 may act as a repressor. CONCLUSIONS: Treatment of hepatitis C with interferon-α results in increased IRF1 levels and our data suggest that this leads to an allele-specific downregulation of MERTK mediated by an allelic effect on the regulatory element containing the functional rs6726639. This variant also shows the hallmarks for being the driver of the genome-wide association studies for reduced risk of liver fibrosis and non-alcoholic fatty liver disease at MERTK.

14.
Genomics ; 107(6): 248-54, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27126307

RESUMEN

Genome-wide association studies (GWAS) point to regions with associated genetic variants but rarely to a specific gene and therefore detailed knowledge regarding the genes contributing to complex traits and diseases remains elusive. The functional role of GWAS-SNPs is also affected by linkage disequilibrium with many variants on the same haplotype and sometimes in the same regulatory element almost equally likely to mediate the effect. Using ChIP-seq data on many transcription factors, we pinpointed genetic variants in HepG2 and HeLa-S3 cell lines which show a genome-wide significant difference in binding between alleles. We identified a collection of 3713 candidate functional regulatory variants many of which are likely drivers of GWAS signals or genetic difference in expression. A recent study investigated many variants before finding the functional ones at the GALNT2 locus, which we found in our genome-wide screen in HepG2. This illustrates the efficiency of our approach.


Asunto(s)
Genes Reguladores/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Factores de Transcripción/genética , Alelos , Cuello del Útero/metabolismo , Femenino , Expresión Génica/genética , Genoma Humano , Haplotipos , Células HeLa , Células Hep G2 , Humanos , Desequilibrio de Ligamiento , Hígado/metabolismo , N-Acetilgalactosaminiltransferasas/biosíntesis , N-Acetilgalactosaminiltransferasas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/genética , Factores de Transcripción/biosíntesis , Polipéptido N-Acetilgalactosaminiltransferasa
15.
Hum Genet ; 135(5): 485-497, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26993500

RESUMEN

Genome-wide association studies (GWAS) have identified a large number of disease-associated SNPs, but in few cases the functional variant and the gene it controls have been identified. To systematically identify candidate regulatory variants, we sequenced ENCODE cell lines and used public ChIP-seq data to look for transcription factors binding preferentially to one allele. We found 9962 candidate regulatory SNPs, of which 16 % were rare and showed evidence of larger functional effect than common ones. Functionally rare variants may explain divergent GWAS results between populations and are candidates for a partial explanation of the missing heritability. The majority of allele-specific variants (96 %) were specific to a cell type. Furthermore, by examining GWAS loci we found >400 allele-specific candidate SNPs, 141 of which were highly relevant in our cell types. Functionally validated SNPs support identification of an SNP in SYNGR1 which may expose to the risk of rheumatoid arthritis and primary biliary cirrhosis, as well as an SNP in the last intron of COG6 exposing to the risk of psoriasis. We propose that by repeating the ChIP-seq experiments of 20 selected transcription factors in three to ten people, the most common polymorphisms can be interrogated for allele-specific binding. Our strategy may help to remove the current bottleneck in functional annotation of the genome.


Asunto(s)
Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Neuroblastoma/genética , Neuroblastoma/metabolismo , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción/metabolismo , Alelos , Biomarcadores , Genotipo , Humanos , Células K562 , Unión Proteica , Células Tumorales Cultivadas
16.
Nucleic Acids Res ; 42(11): 6921-34, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24771338

RESUMEN

Nucleosomes play important roles in a cell beyond their basal functionality in chromatin compaction. Their placement affects all steps in transcriptional regulation, from transcription factor (TF) binding to messenger ribonucleic acid (mRNA) synthesis. Careful profiling of their locations and dynamics in response to stimuli is important to further our understanding of transcriptional regulation by the state of chromatin. We measured nucleosome occupancy in human hepatic cells before and after treatment with transforming growth factor beta 1 (TGFß1), using massively parallel sequencing. With a newly developed method, SuMMIt, for precise positioning of nucleosomes we inferred dynamics of the nucleosomal landscape. Distinct nucleosome positioning has previously been described at transcription start site and flanking TF binding sites. We found that the average pattern is present at very few sites and, in case of TF binding, the double peak surrounding the sites is just an artifact of averaging over many loci. We systematically searched for depleted nucleosomes in stimulated cells compared to unstimulated cells and identified 24 318 loci. Depending on genomic annotation, 44-78% of them were over-represented in binding motifs for TFs. Changes in binding affinity were verified for HNF4α by qPCR. Strikingly many of these loci were associated with expression changes, as measured by RNA sequencing.


Asunto(s)
Nucleosomas/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Teorema de Bayes , Línea Celular , Regulación de la Expresión Génica , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Nucleosomas/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 110(40): 15997-6002, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24043816

RESUMEN

We have investigated whether the recently discovered transcription factor, zinc finger BED domain-containing protein 6 (ZBED6), is expressed in insulin-producing cells and, if so, to what extent it affects beta cell function. ZBED6 was translated from a ZC3H11A transcript in which the ZBED6-containing intron was retained. ZBED6 was present in mouse ßTC-6 cells and human islets as a double nuclear band at 115/120 kDa and as a single cytoplasmic band at 95-100 kDa, which lacked N-terminal nuclear localization signals. We propose that ZBED6 supports proliferation and survival of beta cells, possibly at the expense of specialized beta cell function-i.e., insulin production-because (i) the nuclear ZBED6 were the predominant forms in rapidly proliferating ßTC-6 cells, but not in human islet cells; (ii) down-regulation of ZBED6 in ßTC-6 cells resulted in altered morphology, decreased proliferation, a partial S/G2 cell-cycle arrest, increased expression of beta cell-specific genes, and higher rates of apoptosis; (iii) silencing of ZBED6 in the human PANC-1 duct cell line reduced proliferation rates; and (iv) ZBED6 binding was preferentially to genes that control transcription, macromolecule biosynthesis, and apoptosis. Furthermore, it is possible that beta cells, by switching from full length to a truncated form of ZBED6, can decide the subcellular localization of ZBED6, thereby achieving differential ZBED6-mediated transcriptional regulation.


Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica/fisiología , Células Secretoras de Insulina/metabolismo , Proteínas Represoras/metabolismo , Animales , Apoptosis/genética , Línea Celular , Proliferación Celular , Inmunoprecipitación de Cromatina , Citometría de Flujo , Regulación de la Expresión Génica/genética , Humanos , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Espectrometría de Masas , Ratones , Unión Proteica , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN
18.
Biochim Biophys Acta ; 1839(11): 1341-50, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25111868

RESUMEN

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in many human tumors, including gliomas, and regulates the expression of genes implicated in proliferation, survival, apoptosis, angiogenesis and immune regulation. Only a small fraction of those genes has been proven to be direct STAT3 targets. In gliomas, STAT3 can play tumor suppressive or oncogenic roles depending on the tumor genetic background with target genes being largely unknown. RESULTS: We used chromatin immunoprecipitation, promoter microarrays and deep sequencing to assess the genome-wide occupancy of phospho (p)-Stat3 and epigenetic modifications of H3K4me3 and H3ac in C6 glioma cells. This combined assessment identified a list of 1200 genes whose promoters have both Stat3 binding sites and epigenetic marks characteristic for actively transcribed genes. The Stat3 and histone markings data were also intersected with a set of microarray data from C6 glioma cells after inhibition of Jak2/Stat3 signaling. Subsequently, we found 284 genes characterized by p-Stat3 occupancy, activating histone marks and transcriptional changes. Novel genes were screened for their potential involvement in oncogenesis, and the most interesting hits were verified by ChIP-PCR and STAT3 knockdown in human glioma cells. CONCLUSIONS: Non-random association between silent genes, histone marks and p-Stat3 binding near transcription start sites was observed, consistent with its repressive role in transcriptional regulation of target genes in glioma cells with specific genetic background.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/metabolismo , Factor de Transcripción STAT3/metabolismo , Transcriptoma , Animales , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosforilación , Unión Proteica , Ratas , Factor de Transcripción STAT3/fisiología , Sitio de Iniciación de la Transcripción , Células Tumorales Cultivadas
19.
Genome Biol Evol ; 16(3)2024 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-38386982

RESUMEN

The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.


Asunto(s)
Podospora , Podospora/genética , Filogenia , Reproducción , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
20.
Nat Commun ; 15(1): 6297, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090106

RESUMEN

Krill are vital as food for many marine animals but also impacted by global warming. To learn how they and other zooplankton may adapt to a warmer world we studied local adaptation in the widespread Northern krill (Meganyctiphanes norvegica). We assemble and characterize its large genome and compare genome-scale variation among 74 specimens from the colder Atlantic Ocean and warmer Mediterranean Sea. The 19 Gb genome likely evolved through proliferation of retrotransposons, now targeted for inactivation by extensive DNA methylation, and contains many duplicated genes associated with molting and vision. Analysis of 760 million SNPs indicates extensive homogenizing gene-flow among populations. Nevertheless, we detect signatures of adaptive divergence across hundreds of genes, implicated in photoreception, circadian regulation, reproduction and thermal tolerance, indicating polygenic adaptation to light and temperature. The top gene candidate for ecological adaptation was nrf-6, a lipid transporter with a Mediterranean variant that may contribute to early spring reproduction. Such variation could become increasingly important for fitness in Atlantic stocks. Our study underscores the widespread but uneven distribution of adaptive variation, necessitating characterization of genetic variation among natural zooplankton populations to understand their adaptive potential, predict risks and support ocean conservation in the face of climate change.


Asunto(s)
Adaptación Fisiológica , Euphausiacea , Genómica , Animales , Euphausiacea/genética , Océano Atlántico , Adaptación Fisiológica/genética , Mar Mediterráneo , Polimorfismo de Nucleótido Simple , Genoma , Zooplancton/genética , Flujo Génico , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA