Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Sport Nutr Exerc Metab ; 33(6): 305-315, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37567573

RESUMEN

Endurance exercise can disturb intestinal epithelial integrity, leading to increased systemic indicators of cell injury, hyperpermeability, and pathogenic translocation. However, the interaction between exercise, diet, and gastrointestinal disturbance still warrants exploration. This study examined whether a 6-day dietary intervention influenced perturbations to intestinal epithelial disruption in response to a 25-km race walk. Twenty-eight male race walkers adhered to a high carbohydrate (CHO)/energy diet (65% CHO, energy availability = 40 kcal·kg FFM-1·day-1) for 6 days prior to a Baseline 25-km race walk. Athletes were then split into three subgroups: high CHO/energy diet (n = 10); low-CHO, high-fat diet (LCHF: n = 8; <50 g/day CHO, energy availability = 40 kcal·kg FFM-1·day-1); and low energy availability (n = 10; 65% CHO, energy availability = 15 kcal·kg FFM-1·day-1) for a further 6-day dietary intervention period prior to a second 25-km race walk (Adaptation). During both trials, venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for markers of intestinal epithelial disruption. Intestinal fatty acid-binding protein concentration was significantly higher (twofold increase) in response to exercise during Adaptation compared to Baseline in the LCHF group (p = .001). Similar findings were observed for soluble CD14 (p < .001) and lipopolysaccharide-binding protein (p = .003), where postexercise concentrations were higher (53% and 36%, respectively) during Adaptation than Baseline in LCHF. No differences in high CHO/energy diet or low energy availability were apparent for any blood markers assessed (p > .05). A short-term LCHF diet increased intestinal epithelial cell injury in response to a 25-km race walk. No effect of low energy availability on gastrointestinal injury or symptoms was observed.


Asunto(s)
Dieta Cetogénica , Enfermedades Gastrointestinales , Humanos , Masculino , Dieta Alta en Grasa , Ejercicio Físico , Carbohidratos , Biomarcadores , Carbohidratos de la Dieta
2.
Int J Sport Nutr Exerc Metab ; 32(3): 153-162, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35130515

RESUMEN

INTRODUCTION: Athletes engaged in repeated-sprint training in the heat can be at an increased risk of gastrointestinal ischemia and damage in response to a redistribution of blood to working skeletal muscles and the skin. This study investigated the effects of repeated sprinting in hot and cool conditions on markers of gastrointestinal damage. METHODS: Twenty-five, well-trained, nonheat acclimated male team-sport athletes completed a five-session, repeated-sprint training regimen over 7 days in either HOT (40 °C and 40% relative humidity [RH]) or COOL (20 °C and 40% RH) conditions. Participants underwent a 20-min warm-up and four sets of 5 × 6-s maximal cycling sprints, with 24-s rest and 5-min recovery between sets. Venous blood was collected pre-, post-, and 1 hr postexercise and analyzed for intestinal fatty acid binding protein, lipopolysaccharide binding protein, soluble CD14, and heat-shock protein. RESULTS: Intestinal fatty acid binding protein concentrations were significantly increased (p < .004) postexercise (593 and 454 pg/ml) and 1 hr postexercise (466 and 410 pg/ml) on both Days 1 and 5 in HOT. Soluble CD14 increased by 398 and 308 ng/ml postexercise (p = .041), and lipopolysaccharide binding protein increased by 1,694 ng/ml postexercise on Day 1 in HOT (p < .05) and by 1,520 ng/ml on Day 5 in COOL (p = .026). Core and skin temperature, rating of perceived exertion, and thermal sensation were higher (p < .05) in HOT on Days 1 and 5 during sprinting. CONCLUSIONS: Repeated sprinting in the heat induced greater thermal strain and mild changes in gastrointestinal damage, likely attributable to the combination of environmental conditions and maximal-intensity exercise.


Asunto(s)
Tracto Gastrointestinal , Calor , Receptores de Lipopolisacáridos , Carrera , Proteínas de Fase Aguda , Atletas , Proteínas Portadoras , Proteínas de Unión a Ácidos Grasos , Tracto Gastrointestinal/fisiopatología , Frecuencia Cardíaca/fisiología , Proteínas de Choque Térmico , Humanos , Masculino , Glicoproteínas de Membrana
3.
J Physiol ; 599(3): 771-790, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32697366

RESUMEN

KEY POINTS: Brief (5-6 days) adaptation to a low carbohydrate high fat diet in elite athletes increased exercise fat oxidation to rates previously observed with medium (3-4 weeks) or chronic (>12 months) adherence to this diet, with metabolic changes being washed out in a similar time frame. Increased fat utilisation during exercise was associated with a 5-8% increase in oxygen cost at speeds related to Olympic Programme races. Acute restoration of endogenous carbohydrate (CHO) availability (24 h high CHO diet, pre-race CHO) only partially restored substrate utilisation during a race warm-up. Fat oxidation continued to be elevated above baseline values although it was lower than achieved by 5-6 days' keto adaptation; CHO oxidation only reached 61% and 78% of values previously seen at exercise intensities related to race events. Acute restoration of CHO availability failed to overturn the impairment of high-intensity endurance performance previously associated with low carbohydrate high fat adaptation, potentially due to the blunted capacity for CHO oxidation. ABSTRACT: We investigated substrate utilisation during exercise after brief (5-6 days) adaptation to a ketogenic low-carbohydrate (CHO), high-fat (LCHF) diet and similar washout period. Thirteen world-class male race walkers completed economy testing, 25 km training and a 10,000 m race (Baseline), with high CHO availability (HCHO), repeating this (Adaptation) after 5-6 days' LCHF (n = 7; CHO: <50 g day-1 , protein: 2.2 g kg-1 day-1 ; 80% fat) or HCHO (n = 6; CHO: 9.7 g kg-1 day-1 ; protein: 2.2 g kg-1 day-1 ) diet. An Adaptation race was undertaken after 24 h HCHO and pre-race CHO (2 g kg-1 ) diet, identical to the Baseline race. Substantial (>200%) increases in exercise fat oxidation occurred in the LCHF Adaptation economy and 25 km tests, reaching mean rates of ∼1.43 g min-1 . However, relative V̇O2 (ml min-1  kg-1 ) was higher (P < 0.0001), by ∼8% and 5% at speeds related to 50 km and 20 km events. During Adaptation race warm-up in the LCHF group, rates of fat and CHO oxidation at these speeds were decreased and increased, respectively (P < 0.001), compared with the previous day, but were not restored to Baseline values. Performance changes differed between groups (P = 0.009), with all HCHO athletes improving in the Adaptation race (5.7 (5.6)%), while 6/7 LCHF athletes were slower (2.2 (3.4)%). Substrate utilisation returned to Baseline values after 5-6 days of HCHO diet. In summary, robust changes in exercise substrate use occurred in 5-6 days of extreme changes in CHO intake. However, adaptation to a LCHF diet plus acute restoration of endogenous CHO availability failed to restore high-intensity endurance performance, with CHO oxidation rates remaining blunted.


Asunto(s)
Dieta Alta en Grasa , Glucógeno , Adaptación Fisiológica , Dieta Baja en Carbohidratos , Carbohidratos de la Dieta , Humanos , Masculino , Resistencia Física
4.
Int J Sport Nutr Exerc Metab ; 31(4): 359-368, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039771

RESUMEN

Along with digestion and absorption of nutrients, the gastrointestinal epithelium acts as a primary intestinal defense layer, preventing luminal pathogens from entering the circulation. During exercise in the heat, epithelial integrity can become compromised, allowing bacteria and bacterial endotoxins to translocate into circulation, triggering a systemic inflammatory response and exacerbating gastrointestinal damage. While this relationship seems clear in the general population in endurance/ultraendurance exercise, the aim of this systematic review was to evaluate the effect of exercise in the heat on blood markers of gastrointestinal epithelial disturbance in well-trained individuals. Following the 2009 Preferred Reporting Items for Systematic Reviewed and Meta-Analyses guidelines, five electronic databases were searched for appropriate research, and 1,885 studies were identified. Five studies met the inclusion criteria and were subject to full methodological appraisal by two reviewers. Critical appraisal of the studies was conducted using the McMasters Critical Review Form. The studies investigated changes in markers of gastrointestinal damage (intestinal fatty acid-binding protein, endotoxin, and/or lipopolysaccharide-binding protein) following acute exercise in warm to hot conditions (≥ 30 °C) and included trained or well-trained participants with direct comparisons to a control temperate condition (≤ 22 °C). The studies found that prolonged submaximal and strenuous exercise in hot environmental conditions can acutely increase epithelial disturbance compared with exercise in cooler conditions, with disturbances not being clinically relevant. However, trained and well-trained populations appear to tolerate exercise-induced gastrointestinal disturbance in the heat. Whether this is an acquired tolerance related to regular training remains to be investigated.


Asunto(s)
Atletas , Biomarcadores/sangre , Proteínas Portadoras/sangre , Endotoxinas/sangre , Ejercicio Físico/fisiología , Proteínas de Unión a Ácidos Grasos/sangre , Calor , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/sangre , Proteínas de Fase Aguda , Tracto Gastrointestinal/fisiopatología , Calor/efectos adversos , Humanos , Mucosa Intestinal/fisiopatología , Consumo de Oxígeno , Esfuerzo Físico
5.
Int J Sport Nutr Exerc Metab ; 31(4): 314-320, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030124

RESUMEN

Gastrointestinal disturbances are one of the most common issues for endurance athletes during training and competition in the heat. The relationship between typical dietary intake or nutritional interventions and perturbations in or maintenance of gut integrity is unclear. Twelve well-trained male endurance athletes (peak oxygen consumption = 61.4 ± 7.0 ml·kg-1·min-1) completed two trials in a randomized order in 35 °C (heat) and 21 °C (thermoneutral) conditions and kept a detailed nutritional diary for eight consecutive days between the two trials. The treadmill running trials consisted of 15 min at 60% peak oxygen consumption, 15 min at 75% peak oxygen consumption, followed by 8 × 1-min high-intensity efforts. Venous blood samples were taken at the baseline, at the end of each of the three exercise stages, and 1 hr postexercise to measure gut integrity and the permeability biomarker concentration for intestinal fatty-acid-binding protein, lipopolysaccharide, and lipopolysaccharide-binding protein. The runners self-reported gut symptoms 1 hr postexercise and 3 days postexercise. The heat condition induced large (45-370%) increases in intestinal fatty-acid-binding protein, lipopolysaccharide-binding protein, and lipopolysaccharide concentrations compared with the baseline, but induced mild gastrointestinal symptoms. Carbohydrate and polyunsaturated fat intake 24 hr preexercise were associated with less lipopolysaccharide translocation. Protein, carbohydrate, total fat, and polyunsaturated fat intake (8 days) were positively associated with the percentage increase of intestinal fatty-acid-binding protein in both conditions (range of correlations, 95% confidence interval = .62-.93 [.02, .98]). Typical nutrition intake partly explained increases in biomarkers and the attenuation of symptoms induced by moderate- and high-intensity exercise under both heat and thermoneutral conditions.


Asunto(s)
Ingestión de Alimentos , Tracto Gastrointestinal/fisiología , Calor , Esfuerzo Físico/fisiología , Carrera/fisiología , Adulto , Biomarcadores/sangre , Intervalos de Confianza , Estudios Cruzados , Registros de Dieta , Carbohidratos de la Dieta/administración & dosificación , Grasas de la Dieta/administración & dosificación , Ingestión de Energía , Proteínas de Unión a Ácidos Grasos/sangre , Ácidos Grasos Insaturados/administración & dosificación , Humanos , Lipopolisacáridos/sangre , Masculino , Consumo de Oxígeno , Acondicionamiento Físico Humano/fisiología , Resistencia Física , Fenómenos Fisiológicos en la Nutrición Deportiva , Factores de Tiempo
6.
Int J Sports Physiol Perform ; 16(5): 704-710, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33361496

RESUMEN

PURPOSE: The risk of exercise-induced endotoxemia is increased in the heat and is primarily attributable to changes in gut permeability resulting in the translocation of lipopolysaccharides (LPS) into the circulation. The purpose of this study was to quantify the acute changes in gut permeability and LPS translocation during submaximal continuous and high-intensity interval exercise under heat stress. METHODS: A total of 12 well-trained male runners (age 37 [7] y, maximal oxygen uptake [VO2max] 61.0 [6.8] mL·min-1·kg-1) undertook 2 treadmill runs of 2 × 15-minutes at 60% and 75% VO2max and up to 8 × 1-minutes at 95% VO2max in HOT (34°C, 68% relative humidity) and COOL (18°C, 57% relative humidity) conditions. Venous blood samples were collected at the baseline, following each running intensity, and 1 hour postexercise. Blood samples were analyzed for markers of intestinal permeability (LPS, LPS binding protein, and intestinal fatty acid-binding protein). RESULTS: The increase in LPS binding protein following each exercise intensity in the HOT condition was 4% (5.3 µg·mL-1, 2.4-8.4; mean, 95% confidence interval, P < .001), 32% (4.6 µg·mL-1, 1.8-7.4; P = .002), and 30% (3.0 µg·mL-1, 0.03-5.9; P = .047) greater than in the COOL condition. LPS was 69% higher than baseline following running at 75% VO2max in the HOT condition (0.2 endotoxin units·mL-1, 0.1-0.4; P = .011). Intestinal fatty acid-binding protein increased 43% (2.1 ng·mL-1, 0.1-4.2; P = .04) 1 hour postexercise in HOT compared with the COOL condition. CONCLUSIONS: Small increases in LPS concentration during exercise in the heat and subsequent increases in intestinal fatty acid-binding protein and LPS binding protein indicate a capacity to tolerate acute, transient intestinal disturbance in well-trained endurance runners.


Asunto(s)
Endotoxemia/sangre , Ejercicio Físico/fisiología , Trastornos de Estrés por Calor , Mucosa Intestinal/metabolismo , Consumo de Oxígeno , Carrera/fisiología , Adulto , Prueba de Esfuerzo , Calor , Humanos , Masculino , Esfuerzo Físico
7.
Front Physiol ; 11: 1023, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013443

RESUMEN

This study compared the performance and physiological adaptations of short-term repeated-sprint training in HOT [40°C and 40% relative humidity (RH)] and COOL (20°C and 40% RH) conditions in team-sport athletes. Twenty-five trained males completed five training sessions of 60 min over 7 days in HOT (n = 13) or COOL (n = 12) conditions, consisting of a submaximal warm-up and four sets of maximal sprints. Before and after the intervention, intermittent shuttle running performance was assessed in cool and repeated-sprint ability in hot conditions; the latter preceded and followed by neuromuscular function testing. During the repeated-sprint training sessions, skin (~8.4°C) and core (~0.17°C) temperatures were higher in HOT than COOL (p < 0.05) conditions. Shuttle running distance increased after both interventions (p < 0.001), with a non-significant (p = 0.131) but larger effect in HOT (315 m, d = 1.18) than COOL (207 m, d = 0.51) conditions. Mean (~7%, p < 0.001) and peak (~5%, p < 0.05) power during repeated-sprinting increased following both interventions, whereas peak twitch force before the repeated-sprint assessment was ~10% lower after the interventions (p = 0.001). Heart rate during the repeated-sprint warm-up was reduced (~6 beats.min-1) following both interventions (p < 0.01). Rectal temperature was ~0.14°C lower throughout the repeated-sprint assessment after the interventions (p < 0.001), with larger effects in HOT than COOL during the warm-up (p = 0.082; d = -0.53 vs. d = -0.15) and repeated-sprints (p = 0.081; d = -0.54 vs. d = -0.02). Skin temperature (p = 0.004, d = -1.11) and thermal sensation (p = 0.015, d = -0.93) were lower during the repeated-sprints after training in HOT than COOL. Sweat rate increased (0.2 L.h-1) only after training in HOT (p = 0.027; d = 0.72). The intensive nature of brief repeated-sprint training induces similar improvements in repeated-sprint cycling ability in hot conditions and intermittent running performance in cool conditions, along with analogous physiological adaptations, irrespective of the environmental conditions in which training is undertaken.

8.
J Sci Med Sport ; 23(7): 664-669, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32418804

RESUMEN

The purpose of testing for any communicable disease is to support clinicians in the diagnosis and management of individual patients and to describe transmission dynamics. The novel coronavirus is formally named SARS-CoV-2 and the clinical disease state resulting from an infection is known as COVID-19. Control of the COVID-19 pandemic requires clinicians, epidemiologists, and public health officials to utilise the most comprehensive, accurate and timely information available to manage the rapidly evolving COVID-19 environment. High performance sport is a unique context that may look towards comprehensive testing as a means of risk mitigation. Characteristics of the common testing options are discussed including the circumstances where additional testing may be of benefit and considerations for the associated risks. Finally, a review of the available technology that could be considered for use by medical staff at the point of care (PoC) in a high-performance sporting context is included.


Asunto(s)
Técnicas de Laboratorio Clínico/normas , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Deportes , Australia , Betacoronavirus , COVID-19 , Prueba de COVID-19 , Humanos , Pandemias , Pruebas en el Punto de Atención , SARS-CoV-2
9.
J Sci Med Sport ; 23(7): 639-663, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32451268

RESUMEN

Sport makes an important contribution to the physical, psychological and emotional well-being of Australians. The economic contribution of sport is equivalent to 2-3% of Gross Domestic Product (GDP). The COVID-19 pandemic has had devastating effects on communities globally, leading to significant restrictions on all sectors of society, including sport. Resumption of sport can significantly contribute to the re-establishment of normality in Australian society. The Australian Institute of Sport (AIS), in consultation with sport partners (National Institute Network (NIN) Directors, NIN Chief Medical Officers (CMOs), National Sporting Organisation (NSO) Presidents, NSO Performance Directors and NSO CMOs), has developed a framework to inform the resumption of sport. National Principles for Resumption of Sport were used as a guide in the development of 'the AIS Framework for Rebooting Sport in a COVID-19 Environment' (the AIS Framework); and based on current best evidence, and guidelines from the Australian Federal Government, extrapolated into the sporting context by specialists in sport and exercise medicine, infectious diseases and public health. The principles outlined in this document apply to high performance/professional, community and individual passive (non-contact) sport. The AIS Framework is a timely tool of minimum baseline of standards, for 'how' reintroduction of sport activity will occur in a cautious and methodical manner, based on the best available evidence to optimise athlete and community safety. Decisions regarding the timing of resumption (the 'when') of sporting activity must be made in close consultation with Federal, State/Territory and/or Local Public Health Authorities. The priority at all times must be to preserve public health, minimising the risk of community transmission.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Volver al Deporte/normas , Deportes , Australia , Número Básico de Reproducción , Betacoronavirus , COVID-19 , Control de Enfermedades Transmisibles , Toma de Decisiones , Guías como Asunto , Humanos , Salud Pública , SARS-CoV-2
10.
Int J Sports Physiol Perform ; 13(6): 735-741, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29035591

RESUMEN

Studies examining pacing strategies during 4000-m cycling time trials (TTs) typically ensure that participants are not prefatigued; however, competitive cyclists often undertake TTs when already fatigued. This study aimed to determine how TT pacing strategies and sprint characteristics of cyclists change during an intensified training period (mesocycle). Thirteen cyclists regularly competing in A- and B-grade cycling races and consistently training (>10 h/wk for 4 [1] y) completed a 6-wk training mesocycle. Participants undertook individually prescribed training, using training stress scores (TrainingPeaks, Boulder, CO), partitioned into a baseline week, a build week, 2 loading weeks (designed to elicit an overreached state), and 2 recovery weeks. Laboratory-based tests (15-s sprint and TT) and Recovery-Stress Questionnaire (RESTQ-52) responses were repeatedly undertaken over the mesocycle. TT power output increased during recovery compared with baseline and loading weeks (P = .001) with >6-W increases in mean power output (MPO) detected for 400-m sections (10% bins) from 1200 to 4000 m in recovery weeks. Decreases in peak heart rate (P < .001) during loading weeks and postexercise blood lactate (P = .005) during loading week 2 and recovery week 1 were detected. Compared with baseline, 15-s sprint MPO declined during loading and recovery weeks (P < .001). An interaction was observed between RESTQ-52 total stress score with a 15-s sprint (P = .003) and with a TT MPO (P = .04), indicating that participants who experienced greater stress during loading weeks exhibited reduced performance. To conclude, intensified endurance training diminished sprint performance but improved 4000-m TT performance, with a subtle change in MPO evident over the last 70% of TTs.


Asunto(s)
Ciclismo/fisiología , Conducta Competitiva/fisiología , Acondicionamiento Físico Humano/métodos , Resistencia Física/fisiología , Adulto , Frecuencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad , Humanos , Masculino , Fatiga Muscular/fisiología , Percepción/fisiología , Esfuerzo Físico/fisiología
11.
PLoS One ; 13(2): e0191644, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29444097

RESUMEN

BACKGROUND: Recent research has demonstrated decreases in resting metabolic rate (RMR), body composition and performance following a period of intensified training in elite athletes, however the underlying mechanisms of change remain unclear. Therefore, the aim of the present study was to investigate how an intensified training period, designed to elicit overreaching, affects RMR, body composition, and performance in trained endurance athletes, and to elucidate underlying mechanisms. METHOD: Thirteen (n = 13) trained male cyclists completed a six-week training program consisting of a "Baseline" week (100% of regular training load), a "Build" week (~120% of Baseline load), two "Loading" weeks (~140, 150% of Baseline load, respectively) and two "Recovery" weeks (~80% of Baseline load). Training comprised of a combination of laboratory based interval sessions and on-road cycling. RMR, body composition, energy intake, appetite, heart rate variability (HRV), cycling performance, biochemical markers and mood responses were assessed at multiple time points throughout the six-week period. Data were analysed using a linear mixed modeling approach. RESULTS: The intensified training period elicited significant decreases in RMR (F(5,123.36) = 12.0947, p = <0.001), body mass (F(2,19.242) = 4.3362, p = 0.03), fat mass (F(2,20.35) = 56.2494, p = <0.001) and HRV (F(2,22.608) = 6.5212, p = 0.005); all of which improved following a period of recovery. A state of overreaching was induced, as identified by a reduction in anaerobic performance (F(5,121.87) = 8.2622, p = <0.001), aerobic performance (F(5,118.26) = 2.766, p = 0.02) and increase in total mood disturbance (F(5, 110.61) = 8.1159, p = <0.001). CONCLUSION: Intensified training periods elicit greater energy demands in trained cyclists, which, if not sufficiently compensated with increased dietary intake, appears to provoke a cascade of metabolic, hormonal and neural responses in an attempt to restore homeostasis and conserve energy. The proactive monitoring of energy intake, power output, mood state, body mass and HRV during intensified training periods may alleviate fatigue and attenuate the observed decrease in RMR, providing more optimal conditions for a positive training adaptation.


Asunto(s)
Metabolismo Basal , Ciclismo , Composición Corporal , Adulto , Apetito , Australia , Ingestión de Energía , Frecuencia Cardíaca , Humanos , Modelos Lineales , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA