Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Nature ; 618(7966): 799-807, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37316670

RESUMEN

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Asunto(s)
Hemípteros , Proteínas de Insectos , Oryza , Defensa de la Planta contra la Herbivoria , Proteínas de Plantas , Animales , Hemípteros/inmunología , Hemípteros/fisiología , Leucina/metabolismo , Nucleótidos/metabolismo , Oryza/crecimiento & desarrollo , Oryza/inmunología , Oryza/metabolismo , Oryza/fisiología , Defensa de la Planta contra la Herbivoria/inmunología , Defensa de la Planta contra la Herbivoria/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insectos/metabolismo , Autofagia
2.
Annu Rev Entomol ; 69: 503-525, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37816261

RESUMEN

The rapid advances in available transcriptomic and genomic data and our understanding of the physiology and biochemistry of whitefly-plant interactions have allowed us to gain new and significant insights into the biology of whiteflies and their successful adaptation to host plants. In this review, we provide a comprehensive overview of the mechanisms that whiteflies have evolved to overcome the challenges of feeding on phloem sap. We also highlight the evolution and functions of gene families involved in host perception, evaluation, and manipulation; primary metabolism; and metabolite detoxification. We discuss the emerging themes in plant immunity to whiteflies, focusing on whitefly effectors and their sites of action in plant defense-signaling pathways. We conclude with a discussion of advances in the genetic manipulation of whiteflies and the potential that they hold for exploring the interactions between whiteflies and their host plants, as well as the development of novel strategies for the genetic control of whiteflies.


Asunto(s)
Hemípteros , Animales , Hemípteros/genética , Plantas , Transducción de Señal
3.
BMC Plant Biol ; 23(1): 657, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124051

RESUMEN

BACKGROUND: Whiteflies are a global threat to crop yields, including the African subsistence crop cassava (Manihot esculenta). Outbreaks of superabundant whitefly populations throughout Eastern and Central Africa in recent years have dramatically increased the pressures of whitefly feeding and virus transmission on cassava. Whitefly-transmitted viral diseases threaten the food security of hundreds of millions of African farmers, highlighting the need for developing and deploying whitefly-resistant cassava. However, plant resistance to whiteflies remains largely poorly characterized at the genetic and molecular levels. Knowledge of cassava-defense programs also remains incomplete, limiting characterization of whitefly-resistance mechanisms. To better understand the genetic basis of whitefly resistance in cassava, we define the defense hormone- and Aleurotrachelus socialis (whitefly)-responsive transcriptome of whitefly-susceptible (COL2246) and whitefly-resistant (ECU72) cassava using RNA-seq. For broader comparison, hormone-responsive transcriptomes of Arabidopsis thaliana were also generated. RESULTS: Whitefly infestation, salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) transcriptome responses of ECU72 and COL2246 were defined and analyzed. Strikingly, SA responses were largely reciprocal between the two cassava genotypes and we suggest candidate regulators. While susceptibility was associated with SA in COL2246, resistance to whitefly in ECU72 was associated with ABA, with SA-ABA antagonism observed. This was evidenced by expression of genes within the SA and ABA pathways and hormone levels during A. socialis infestation. Gene-enrichment analyses of whitefly- and hormone-responsive genes suggest the importance of fast-acting cell wall defenses (e.g., elicitor recognition, lignin biosynthesis) during early infestation stages in whitefly-resistant ECU72. A surge of ineffective immune and SA responses characterized the whitefly-susceptible COL2246's response to late-stage nymphs. Lastly, in comparison with the model plant Arabidopsis, cassava's hormone-responsive genes showed striking divergence in expression. CONCLUSIONS: This study provides the first characterization of cassava's global transcriptome responses to whitefly infestation and defense hormone treatment. Our analyses of ECU72 and COL2246 uncovered possible whitefly resistance/susceptibility mechanisms in cassava. Comparative analysis of cassava and Arabidopsis demonstrated that defense programs in Arabidopsis may not always mirror those in crop species. More broadly, our hormone-responsive transcriptomes will also provide a baseline for the cassava community to better understand global responses to other yield-limiting pests/pathogens.


Asunto(s)
Arabidopsis , Hemípteros , Manihot , Animales , Ácido Abscísico , Manihot/genética , Manihot/metabolismo , Lignina , Arabidopsis/genética , Hemípteros/fisiología , Perfilación de la Expresión Génica , Verduras/genética , Verduras/metabolismo , Hormonas , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/genética
4.
BMC Genomics ; 23(1): 721, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273137

RESUMEN

BACKGROUND: Homalodisca vitripennis Germar, the glassy-winged sharpshooter, is an invasive insect in California and a critical threat to agriculture through its transmission of the plant pathogen, Xylella fastidiosa. Quarantine, broad-spectrum insecticides, and biological control have been used for population management of H. vitripennis since its invasion and subsequent proliferation throughout California. Recently wide-spread neonicotinoid resistance has been detected in populations of H. vitripennis in the southern portions of California's Central Valley. In order to better understand potential mechanisms of H. vitripennis neonicotinoid resistance, we performed RNA sequencing on wild-caught insecticide-resistant and relatively susceptible sharpshooters to profile their transcriptome and population structure. RESULTS: We identified 81 differentially expressed genes with higher expression in resistant individuals. The significant largest differentially expressed candidate gene linked to resistance status was a cytochrome P450 gene with similarity to CYP6A9. Furthermore, we observed an over-enrichment of GO terms representing functions supportive of roles in resistance mechanisms (cytochrome P450s, M13 peptidases, and cuticle structural proteins). Finally, we saw no evidence of broad-scale population structure, perhaps due to H. vitripennis' relatively recent introduction to California or due to the relatively small geographic scale investigated here. CONCLUSIONS: In this work, we characterized the transcriptome of insecticide-resistant and susceptible H. vitripennis and identified candidate genes that may be involved in resistance mechanisms for this species. Future work should seek to build on the transcriptome profiling performed here to confirm the role of the identified genes, particularly the cytochrome P450, in resistance in H. vitripennis. We hope this work helps aid future population management strategies for this and other species with growing insecticide resistance.


Asunto(s)
Hemípteros , Insecticidas , Animales , Citocromos/genética , Citocromos/metabolismo , Hemípteros/genética , Hemípteros/metabolismo , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Insecticidas/metabolismo , Neonicotinoides , Péptido Hidrolasas/genética , Transcriptoma
5.
Cancer ; 127(3): 422-436, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170506

RESUMEN

BACKGROUND: Women of lower socioeconomic status (SES) with early-stage breast cancer are more likely to report poorer physician-patient communication, lower satisfaction with surgery, lower involvement in decision making, and higher decision regret compared to women of higher SES. The objective of this study was to understand how to support women across socioeconomic strata in making breast cancer surgery choices. METHODS: We conducted a 3-arm (Option Grid, Picture Option Grid, and usual care), multisite, randomized controlled superiority trial with surgeon-level randomization. The Option Grid (text only) and Picture Option Grid (pictures plus text) conversation aids were evidence-based summaries of available breast cancer surgery options on paper. Decision quality (primary outcome), treatment choice, treatment intention, shared decision making (SDM), anxiety, quality of life, decision regret, and coordination of care were measured from T0 (pre-consultation) to T5 (1-year after surgery. RESULTS: Sixteen surgeons saw 571 of 622 consented patients. Patients in the Picture Option Grid arm (n = 248) had higher knowledge (immediately after the visit [T2] and 1 week after surgery or within 2 weeks of the first postoperative visit [T3]), an improved decision process (T2 and T3), lower decision regret (T3), and more SDM (observed and self-reported) compared to usual care (n = 257). Patients in the Option Grid arm (n = 66) had higher decision process scores (T2 and T3), better coordination of care (12 weeks after surgery or within 2 weeks of the second postoperative visit [T4]), and more observed SDM (during the surgical visit [T1]) compared to usual care arm. Subgroup analyses suggested that the Picture Option Grid had more impact among women of lower SES and health literacy. Neither intervention affected concordance, treatment choice, or anxiety. CONCLUSIONS: Paper-based conversation aids improved key outcomes over usual care. The Picture Option Grid had more impact among disadvantaged patients. LAY SUMMARY: The objective of this study was to understand how to help women with lower incomes or less formal education to make breast cancer surgery choices. Compared with usual care, a conversation aid with pictures and text led to higher knowledge. It improved the decision process and shared decision making (SDM) and lowered decision regret. A text-only conversation aid led to an improved decision process, more coordinated care, and higher SDM compared to usual care. The conversation aid with pictures was more helpful for women with lower income or less formal education. Conversation aids with pictures and text helped women make better breast cancer surgery choices.


Asunto(s)
Neoplasias de la Mama/cirugía , Toma de Decisiones Conjunta , Adulto , Anciano , Comunicación , Técnicas de Apoyo para la Decisión , Femenino , Humanos , Persona de Mediana Edad , Participación del Paciente , Clase Social
6.
New Phytol ; 230(4): 1305-1320, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33555072

RESUMEN

Attacks on plants by both viruses and their vectors is common in nature. Yet the dynamics of the plant-virus-vector tripartite system, in particular the effects of viral infection on plant-insect interactions, have only begun to emerge in the last decade. Viruses can modulate the interactions between insect vectors and plants via the jasmonate, salicylic acid and ethylene phytohormone pathways, resulting in changes in fitness and viral transmission capacity of their insect vectors. Virus infection of plants may also modulate other phytohormones, such as auxin, gibberellins, cytokinins, brassinosteroids and abscisic acid, with yet undefined consequences on plant-insect interactions. Moreover, virus infection in plants may incur changes to other plant traits, such as nutrition and secondary metabolites, that potentially contribute to virus-associated, phytohormone-mediated manipulation of plant-insect interactions. In this article, we review the research progress, discuss issues related to the complexity and variability of the viral modulation of plant interactions with insect vectors, and suggest future directions of research in this field.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Virus de Plantas , Animales , Citocininas , Insectos , Enfermedades de las Plantas
7.
BMC Genomics ; 21(1): 93, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996126

RESUMEN

BACKGROUND: Whiteflies are a threat to cassava (Manihot esculenta), an important staple food in many tropical/subtropical regions. Understanding the molecular mechanisms regulating cassava's responses against this pest is crucial for developing control strategies. Pathogenesis-related (PR) protein families are an integral part of plant immunity. With the availability of whole genome sequences, the annotation and expression programs of the full complement of PR genes in an organism can now be achieved. An understanding of the responses of the entire complement of PR genes during biotic stress and to the defense hormones, salicylic acid (SA) and jasmonic acid (JA), is lacking. Here, we analyze the responses of cassava PR genes to whiteflies, SA, JA, and other biotic aggressors. RESULTS: The cassava genome possesses 14 of the 17 plant PR families, with a total of 447 PR genes. A cassava PR gene nomenclature is proposed. Phylogenetic relatedness of cassava PR proteins to each other and to homologs in poplar, rice and Arabidopsis identified cassava-specific PR gene family expansions. The temporal programs of PR gene expression in response to the whitefly (Aleurotrachelus socialis) in four whitefly-susceptible cassava genotypes showed that 167 of the 447 PR genes were regulated after whitefly infestation. While the timing of PR gene expression varied, over 37% of whitefly-regulated PR genes were downregulated in all four genotypes. Notably, whitefly-responsive PR genes were largely coordinately regulated by SA and JA. The analysis of cassava PR gene expression in response to five other biotic stresses revealed a strong positive correlation between whitefly and Xanthomonas axonopodis and Cassava Brown Streak Virus responses and negative correlations between whitefly and Cassava Mosaic Virus responses. Finally, certain associations between PR genes in cassava expansions and response to biotic stresses were observed among PR families. CONCLUSIONS: This study represents the first genome-wide characterization of PR genes in cassava. PR gene responses to six biotic stresses and to SA and JA are demonstrably different to other angiosperms. We propose that our approach could be applied in other species to fully understand PR gene regulation by pathogens, pests and the canonical defense hormones SA and JA.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Parásitos/genética , Manihot/genética , Manihot/parasitología , Familia de Multigenes , Transcriptoma , Resistencia a la Enfermedad/genética , Genotipo , Manihot/efectos de los fármacos , Manihot/metabolismo , Oryza/genética , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Populus/genética , Populus/metabolismo , Reproducibilidad de los Resultados , Ácido Salicílico/metabolismo , Factores de Tiempo
8.
J Biol Chem ; 293(9): 3234-3235, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29500269

RESUMEN

Plants immune surveillance systems depend on nucleotide-binding leucine-rich repeat receptors (NLRs). A subset of NLRs are nuclear-localized, including Rx1, which confers an extreme immunity against potato virus X (PVX). As with many NLRs, the downstream signaling partners of Rx1 are unknown. Townsend et al. identify a Golden-like transcription factor that interacts with Rx1 and mediates antiviral immunity, providing the first insights into the specificity factors that enable the nonspecific DNA-binding Rx1 to confer extreme resistance to PVX.


Asunto(s)
Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Plantas/inmunología , Plantas/metabolismo , Proteínas Quinasas/metabolismo , Plantas/virología , Potexvirus/fisiología
9.
BMC Plant Biol ; 19(1): 518, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31775619

RESUMEN

BACKGROUND: Cassava whitefly outbreaks were initially reported in East and Central Africa cassava (Manihot esculenta Crantz) growing regions in the 1990's and have now spread to other geographical locations, becoming a global pest severely affecting farmers and smallholder income. Whiteflies impact plant yield via feeding and vectoring cassava mosaic and brown streak viruses, making roots unsuitable for food or trading. Deployment of virus resistant varieties has had little impact on whitefly populations and therefore development of whitefly resistant varieties is also necessary as part of integrated pest management strategies. Suitable sources of whitefly resistance exist in germplasm collections that require further characterization to facilitate and assist breeding programs. RESULTS: In the present work, a hierarchical metabolomics approach has been employed to investigate the underlying biochemical mechanisms associated with whitefly resistance by comparing two naturally occurring accessions of cassava, one susceptible and one resistant to whitefly. Quantitative differences between genotypes detected at pre-infestation stages were consistently observed at each time point throughout the course of the whitefly infestation. This prevalent differential feature suggests that inherent genotypic differences override the response induced by the presence of whitefly and that they are directly linked with the phenotype observed. The most significant quantitative changes relating to whitefly susceptibility were linked to the phenylpropanoid super-pathway and its linked sub-pathways: monolignol, flavonoid and lignan biosynthesis. These findings suggest that the lignification process in the susceptible variety is less active, as the susceptible accession deposits less lignin and accumulates monolignol intermediates and derivatives thereof, differences that are maintained during the time-course of the infestation. CONCLUSIONS: Resistance mechanism associated to the cassava whitefly-resistant accession ECU72 is an antixenosis strategy based on reinforcement of cell walls. Both resistant and susceptible accessions respond differently to whitefly attack at biochemical level, but the inherent metabolic differences are directly linked to the resistance phenotype rather than an induced response in the plant.


Asunto(s)
Hemípteros , Manihot/genética , Enfermedades de las Plantas/parasitología , Animales , Resistencia a la Enfermedad/genética , Variación Genética , Manihot/parasitología , Metabolómica , Fenilpropionatos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Propanoles/metabolismo
10.
J Integr Plant Biol ; 58(4): 350-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26467026

RESUMEN

Hemipteran and dipteran insects have behavioral, cellular and chemical strategies for evading or coping with the host plant defenses making these insects particularly destructive pests worldwide. A critical component of a host plant's defense to herbivory is innate immunity. Here we review the status of our understanding of the receptors that contribute to perception of hemipteran and dipteran pests and highlight the gaps in our knowledge in these early events in immune signaling. We also highlight recent advances in identification of the effectors that activate pattern-triggered immunity and those involved in effector-triggered immunity.


Asunto(s)
Dípteros/fisiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno/inmunología , Animales , Modelos Biológicos , Receptores de Superficie Celular/metabolismo , Transducción de Señal
11.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1649-58, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914976

RESUMEN

The acidic leucine aminopeptidase (LAP-A) from tomato is induced in response to wounding and insect feeding. Although LAP-A shows in vitro peptidase activity towards peptides and peptide analogs, it is not clear what kind of substrates LAP-A hydrolyzes in vivo. In the current study, the crystal structure of LAP-A was determined to 2.20 Šresolution. Like other LAPs in the M17 peptidase family, LAP-A is a dimer of trimers containing six monomers of bilobal structure. Each monomer contains two metal ions bridged by a water or a hydroxyl ion at the active site. Modeling of different peptides or peptide analogs in the active site of LAP-A reveals a spacious substrate-binding channel that can bind peptides of five or fewer residues with few geometric restrictions. The sequence specificity of the bound peptide is likely to be selected by the structural and chemical restrictions on the amino acid at the P1 and P1' positions because these two amino acids have to bind perfectly at the active site for hydrolysis of the first peptide bond to occur. The hexameric assembly results in the merger of the open ends of the six substrate-binding channels from the LAP-A monomers to form a spacious central cavity allowing the hexameric LAP-A enzyme to simultaneously hydrolyze six peptides containing up to six amino acids each. The hexameric LAP-A enzyme may also hydrolyze long peptides or proteins if only one such substrate is bound to the hexamer because the substrate can extend through the central cavity and the two major solvent channels between the two LAP-A trimers.


Asunto(s)
Leucil Aminopeptidasa/química , Solanum lycopersicum/enzimología , Leucil Aminopeptidasa/metabolismo , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
12.
J Biol Chem ; 287(22): 18408-17, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22493451

RESUMEN

Leucine aminopeptidases (LAPs) are present in animals, plants, and microbes. In plants, there are two classes of LAPs. The neutral LAPs (LAP-N and its orthologs) are constitutively expressed and detected in all plants, whereas the stress-induced acidic LAPs (LAP-A) are expressed only in a subset of the Solanaceae. LAPs have a role in insect defense and act as a regulator of the late branch of wound signaling in Solanum lycopersicum (tomato). Although the mechanism of LAP-A action is unknown, it has been presumed that LAP peptidase activity is essential for regulating wound signaling. Here we show that plant LAPs are bifunctional. Using three assays to monitor protein protection from heat-induced damage, it was shown that the tomato LAP-A and LAP-N and the Arabidopsis thaliana LAP1 and LAP2 are molecular chaperones. Assays using LAP-A catalytic site mutants demonstrated that LAP-A chaperone activity was independent of its peptidase activity. Furthermore, disruption of the LAP-A hexameric structure increased chaperone activity. Together, these data identify a new class of molecular chaperones and a new function for the plant LAPs as well as suggesting new mechanisms for LAP action in the defense of solanaceous plants against stress.


Asunto(s)
Leucil Aminopeptidasa/metabolismo , Chaperonas Moleculares/metabolismo , Solanum lycopersicum/enzimología , Estrés Fisiológico , Secuencia de Bases , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Mutagénesis Sitio-Dirigida , Reacción en Cadena de la Polimerasa
13.
Ecol Lett ; 16(3): 390-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23279824

RESUMEN

Vectors often perform better on plants infected with pathogens, and this promotes the spread of pathogens. However, few studies have examined how plant defensive compounds mediate such mutualistic relationships. Although tobacco plants are relatively poor host plants for the whitefly Bemisia tabaci, tobacco's suitability to the whitefly was substantially increased when infected by the begomovirus Tomato yellow leaf curl China virus. The change in suitability was associated with induced terpenoid synthesis in whitefly-infested plants and repressed terpenoid synthesis in virus-infected plants. Elevation of terpenoid levels via exogenous stem applications reduced the performance of whiteflies. In contrast, suppression of terpenoid synthesis via gene silencing improved whitefly fitness. By integrating genomics, transcriptomics and metabolomics, this study demonstrated that virus infection depleted the terpenoid-mediated plant defence against whiteflies, thereby favouring vector-virus mutualism. These data suggest that plant terpenoids play a key role in shaping vector-pathogen relationships.


Asunto(s)
Begomovirus/fisiología , Hemípteros/fisiología , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología , Nicotiana/virología , Terpenos/metabolismo , Animales , Femenino , Regulación de la Expresión Génica de las Plantas , Masculino , Enfermedades de las Plantas , Crecimiento Demográfico , Simbiosis , Nicotiana/genética , Nicotiana/metabolismo
14.
Front Plant Sci ; 14: 1020275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701797

RESUMEN

Tomato (Solanum lycopersicum) is a model species for studying fruit development, wounding, herbivory, and pathogen attack. Despite tomato's world-wide economic importance and the role of chloroplasts as metabolic hubs and integrators of environmental cues, little is known about the stromal proteome of tomato. Using a high-yielding protocol for chloroplast and stromal protein isolation, MudPIT nano-LC-MS/MS analyses, a robust in-house protein database (the Atlas) for predicting the plastid localization of tomato proteins, and rigorous selection criteria for inclusion/exclusion in the stromal proteome, we identified 1,278 proteins of the tomato stromal proteome. We provide one of the most robust stromal proteomes available to date with empirical evidence for 545 and 92 proteins not previously described for tomato plastids and the Arabidopsis stroma, respectively. The relative abundance of tomato stromal proteins was determined using the exponentially modified protein abundance index (emPAI). Comparison of the abundance of tomato and Arabidopsis stromal proteomes provided evidence for the species-specific nature of stromal protein homeostasis. The manual curation of the tomato stromal proteome classified proteins into ten functional categories resulting in an accessible compendium of tomato chloroplast proteins. After curation, only 91 proteins remained as unknown, uncharacterized or as enzymes with unknown functions. The curation of the tomato stromal proteins also indicated that tomato has a number of paralogous proteins, not present in Arabidopsis, which accumulated to different levels in chloroplasts. As some of these proteins function in key metabolic pathways or in perceiving or transmitting signals critical for plant adaptation to biotic and abiotic stress, these data suggest that tomato may modulate the bidirectional communication between chloroplasts and nuclei in a novel manner. The stromal proteome provides a fertile ground for future mechanistic studies in the field of tomato chloroplast-nuclear signaling and are foundational for our goal of elucidating the dynamics of the stromal proteome controlled by the solanaceous-specific, stromal, and wound-inducible leucine aminopeptidase A of tomato.

15.
mSphere ; 8(5): e0026723, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37800904

RESUMEN

The glassy-winged sharpshooter, Homalodisca vitripennis Germar, is an invasive xylem-feeding leafhopper with a devastating economic impact on California agriculture through transmission of the plant pathogen, Xylella fastidiosa. While studies have focused on X. fastidiosa or known symbionts of H. vitripennis, little work has been done at the scale of the microbiome (the bacterial community) or mycobiome (the fungal community). Here, we characterize the mycobiome and the microbiome of H. vitripennis across Southern California and explore correlations with captivity and host insecticide resistance status. Using high-throughput sequencing of the ribosomal internal transcribed spacer 1 region and the 16S rRNA gene to profile the mycobiome and microbiome, respectively, we found that while the H. vitripennis mycobiome significantly varied across Southern California, the microbiome did not. We also observed a significant difference in both the mycobiome and microbiome between captive and wild H. vitripennis. Finally, we found that the mycobiome, but not the microbiome, was correlated with insecticide resistance status in wild H. vitripennis. This study serves as a foundational look at the H. vitripennis mycobiome and microbiome across Southern California. Future work should explore the putative link between microbes and insecticide resistance status and investigate whether microbial communities should be considered in H. vitripennis management practices. IMPORTANCE The glassy-winged sharpshooter is an invasive leafhopper that feeds on the xylem of plants and transmits the devastating pathogen, Xylella fastidiosa, resulting in significant economic damage to California's agricultural system. While studies have focused on this pathogen or obligate symbionts of the glassy-winged sharpshooter, there is limited knowledge of the bacterial and fungal communities that make up its microbiome and mycobiome. To address this knowledge gap, we explored the composition of the mycobiome and the microbiome of the glassy-winged sharpshooter across Southern California and identified differences associated with geography, captivity, and host insecticide resistance status. Understanding sources of variation in the microbial communities associated with the glassy-winged sharpshooter is an important consideration for developing management strategies to control this invasive insect. This study is a first step toward understanding the role microbes may play in the glassy-winged sharpshooter's resistance to insecticides.


Asunto(s)
Hemípteros , Microbiota , Micobioma , Animales , ARN Ribosómico 16S/genética , Hemípteros/microbiología , Geografía
16.
Front Bioeng Biotechnol ; 10: 900785, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35747496

RESUMEN

The origin of the order Hemiptera can be traced to the late Permian Period more than 230 MYA, well before the origin of flowering plants 100 MY later in during the Cretaceous period. Hemipteran species consume their liquid diets using a sucking proboscis; for phytophagous hemipterans their mouthparts (stylets) are elegant structures that enable voracious feeding from plant xylem or phloem. This adaptation has resulted in some hemipteran species becoming globally significant pests of agriculture resulting in significant annual crop losses. Due to the reliance on chemical insecticides for the control of insect pests in agricultural settings, many hemipteran pests have evolved resistance to insecticides resulting in an urgent need to develop new, species-specific and environmentally friendly methods of pest control. The rapid advances in CRISPR/Cas9 technologies in model insects such as Drosophila melanogaster, Tribolium castaneum, Bombyx mori, and Aedes aegypti has spurred a new round of innovative genetic control strategies in the Diptera and Lepidoptera and an increased interest in assessing genetic control technologies for the Hemiptera. Genetic control approaches in the Hemiptera have, to date, been largely overlooked due to the problems of introducing genetic material into the germline of these insects. The high frequency of CRISPR-mediated mutagenesis in model insect species suggest that, if the delivery problem for Hemiptera could be solved, then gene editing in the Hemiptera might be quickly achieved. Significant advances in CRISPR/Cas9 editing have been realized in nine species of Hemiptera over the past 4 years. Here we review progress in the Hemiptera and discuss the challenges and opportunities for extending contemporary genetic control strategies into species in this agriculturally important insect orderr.

17.
Sci Rep ; 12(1): 6428, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440677

RESUMEN

CRISPR/Cas9 technology enables the extension of genetic techniques into insect pests previously refractory to genetic analysis. We report the establishment of genetic analysis in the glassy-winged sharpshooter (GWSS), Homalodisca vitripennis, which is a significant leafhopper pest of agriculture in California. We use a novel and simple approach of embryo microinjection in situ on the host plant and obtain high frequency mutagenesis, in excess of 55%, of the cinnabar and white eye pigmentation loci. Through pair matings, we obtained 100% transmission of w and cn alleles to the G3 generation and also established that both genes are located on autosomes. Our analysis of wing phenotype revealed an unexpected discovery of the participation of pteridine pigments in wing and wing-vein coloration, indicating a role for these pigments beyond eye color. We used amplicon sequencing to examine the extent of off-target mutagenesis in adults arising from injected eggs, which was found to be negligible or non-existent. Our data show that GWSS can be easily developed as a genetic model system for the Hemiptera, enabling the study of traits that contribute to the success of invasive pests and vectors of plant pathogens. This will facilitate novel genetic control strategies.


Asunto(s)
Sistemas CRISPR-Cas , Hemípteros , Animales , Sistemas CRISPR-Cas/genética , Hemípteros/genética , Pigmentación/genética
18.
Planta ; 234(4): 857-63, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21744092

RESUMEN

The effects of cadmium (Cd) on aminopeptidase (AP) activities and Leucine-AP (LAP) expression were investigated in the roots of tomato (Solanum lycopersicum L., var Ibiza) plants. Three-week-old plants were grown for 10 days in the presence of 0.3-300 µM Cd and compared to control plants grown in the absence of Cd. AP activities were measured using six different p-nitroanilide (p-NA) substrates. Leu, Met, Arg, Pro and Lys hydrolyzing activities increased in roots of Cd-treated plants, while Phe-pNA cleavage was not enhanced after Cd treatments. The use of peptidase inhibitors showed that most of the Leu-pNA hydrolyzing activity was related to one or several metallo-APs. Changes in Lap transcripts, protein and activities were measured in the roots of 0 and 30-µM Cd-treated plants. LapA transcript levels increased in Cd-treated roots, whereas LapN RNAs levels were not modified. To assess amount of Leu-pNA hydrolyzing activity associated with the hexameric LAPs, LAP activity was measured following immunoprecipitation with a LAP polyclonal antiserum. LAP activity increased in Cd-treated roots. There was a corresponding increase in LAP-A protein levels detected in 2D-immunoblots. The role of LAP-A in the proteolytic response to Cd stress is discussed.


Asunto(s)
Aminopeptidasas/efectos de los fármacos , Aminopeptidasas/metabolismo , Cadmio/farmacología , Raíces de Plantas/enzimología , Inhibidores de Proteasas/farmacología , Solanum lycopersicum/enzimología , Aminopeptidasas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Leucil Aminopeptidasa/efectos de los fármacos , Leucil Aminopeptidasa/genética , Leucil Aminopeptidasa/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Extractos Vegetales , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Plantones/metabolismo , Estrés Fisiológico , Especificidad por Sustrato , Factores de Tiempo , Regulación hacia Arriba
19.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568917

RESUMEN

Homalodisca vitripennis (Hemiptera: Cicadellidae), known as the glassy-winged sharpshooter, is a xylem feeding leafhopper and an important agricultural pest as a vector of Xylella fastidiosa, which causes Pierce's disease in grapes and a variety of other scorch diseases. The current H. vitripennis reference genome from the Baylor College of Medicine's i5k pilot project is a 1.4-Gb assembly with 110,000 scaffolds, which still has significant gaps making identification of genes difficult. To improve on this effort, we used a combination of Oxford Nanopore long-read sequencing technology combined with Illumina sequencing reads to generate a better assembly and first-pass annotation of the whole genome sequence of a wild-caught Californian (Tulare County) individual of H. vitripennis. The improved reference genome assembly for H. vitripennis is 1.93-Gb in length (21,254 scaffolds, N50 = 650 Mb, BUSCO completeness = 94.3%), with 33.06% of the genome masked as repetitive. In total, 108,762 gene models were predicted including 98,296 protein-coding genes and 10,466 tRNA genes. As an additional community resource, we identified 27 orthologous candidate genes of interest for future experimental work including phenotypic marker genes like white. Furthermore, as part of the assembly process, we generated four endosymbiont metagenome-assembled genomes, including a high-quality near complete 1.7-Mb Wolbachia sp. genome (1 scaffold, CheckM completeness = 99.4%). The improved genome assembly and annotation for H. vitripennis, curated set of candidate genes, and endosymbiont MAGs will be invaluable resources for future research of H. vitripennis.


Asunto(s)
Genoma de los Insectos , Hemípteros , Xylella , Animales , Hemípteros/genética , Metagenoma , Proyectos Piloto
20.
Mol Plant ; 14(10): 1714-1732, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34246801

RESUMEN

Phloem-feeding insects cause massive losses in agriculture and horticulture. Host plant resistance to phloem-feeding insects is often mediated by changes in phloem composition, which deter insect settling and feeding and decrease viability. Here, we report that rice plant resistance to the phloem-feeding brown planthopper (BPH) is associated with fortification of the sclerenchyma tissue, which is located just beneath the epidermis and a cell layer or two away from the vascular bundle in the rice leaf sheath. We found that BPHs prefer to feed on the smooth and soft region on the surface of rice leaf sheaths called the long-cell block. We identified Bph30 as a rice BPH resistance gene that prevents BPH stylets from reaching the phloem due to the fortified sclerenchyma. Bph30 is strongly expressed in sclerenchyma cells and enhances cellulose and hemicellulose synthesis, making the cell walls stiffer and sclerenchyma thicker. The structurally fortified sclerenchyma is a formidable barrier preventing BPH stylets from penetrating the leaf sheath tissues and arriving at the phloem to feed. Bph30 belongs to a novel gene family, encoding a protein with two leucine-rich domains. Another member of the family, Bph40, also conferred resistance to BPH. Collectively, the fortified sclerenchyma-mediated resistance mechanism revealed in this study expands our understanding of plant-insect interactions and opens a new path for controlling planthoppers in rice.


Asunto(s)
Genes de Plantas , Hemípteros/fisiología , Oryza/genética , Oryza/parasitología , Hojas de la Planta/parasitología , Animales , Resistencia a la Enfermedad/genética , Femenino , Oryza/inmunología , Células Vegetales/parasitología , Células Vegetales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA