Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(12): 1982-1993, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38012408

RESUMEN

Visualization of the cellular heterogeneity and spatial architecture of the tumor microenvironment (TME) is becoming increasingly important to understand mechanisms of disease progression and therapeutic response. This is particularly relevant in the era of cancer immunotherapy, in which the contexture of immune cell positioning within the tumor landscape has been proven to affect efficacy. Although single-cell technologies have mostly replaced conventional approaches to analyze specific cellular subsets within tumors, those that integrate a spatial dimension are now on the rise. In this Review, we assess the strengths and limitations of emerging spatial technologies with a focus on their applications in tumor immunology, as well as forthcoming opportunities for artificial intelligence (AI) and the value of integrating multiomics datasets to achieve a holistic picture of the TME.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inteligencia Artificial , Progresión de la Enfermedad , Inmunoterapia , Neoplasias/terapia
2.
Nature ; 614(7948): 548-554, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725934

RESUMEN

Single-cell technologies have revealed the complexity of the tumour immune microenvironment with unparalleled resolution1-9. Most clinical strategies rely on histopathological stratification of tumour subtypes, yet the spatial context of single-cell phenotypes within these stratified subgroups is poorly understood. Here we apply imaging mass cytometry to characterize the tumour and immunological landscape of samples from 416 patients with lung adenocarcinoma across five histological patterns. We resolve more than 1.6 million cells, enabling spatial analysis of immune lineages and activation states with distinct clinical correlates, including survival. Using deep learning, we can predict with high accuracy those patients who will progress after surgery using a single 1-mm2 tumour core, which could be informative for clinical management following surgical resection. Our dataset represents a valuable resource for the non-small cell lung cancer research community and exemplifies the utility of spatial resolution within single-cell analyses. This study also highlights how artificial intelligence can improve our understanding of microenvironmental features that underlie cancer progression and may influence future clinical practice.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Pulmón/patología , Pulmón/cirugía , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Microambiente Tumoral/inmunología , Progresión de la Enfermedad , Aprendizaje Profundo , Pronóstico
3.
Nature ; 614(7948): 555-563, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725935

RESUMEN

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Asunto(s)
Neoplasias Encefálicas , Glioma , Análisis de la Célula Individual , Microambiente Tumoral , Humanos , Encéfalo/inmunología , Encéfalo/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Glioblastoma/inmunología , Glioblastoma/patología , Glioma/inmunología , Glioma/patología , Macrófagos/enzimología , Microambiente Tumoral/inmunología , Metástasis de la Neoplasia , Conjuntos de Datos como Asunto
4.
Genes Dev ; 33(3-4): 180-193, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692208

RESUMEN

Claudin-2 promotes breast cancer liver metastasis by enabling seeding and early cancer cell survival. We now demonstrate that the PDZ-binding motif of Claudin-2 is necessary for anchorage-independent growth of cancer cells and is required for liver metastasis. Several PDZ domain-containing proteins were identified that interact with the PDZ-binding motif of Claudin-2 in liver metastatic breast cancer cells, including Afadin, Arhgap21, Pdlim2, Pdlim7, Rims2, Scrib, and ZO-1. We specifically examined the role of Afadin as a potential Claudin-2-interacting partner that promotes breast cancer liver metastasis. Afadin associates with Claudin-2, an interaction that requires the PDZ-binding motif of Claudin-2. Loss of Afadin also impairs the ability of breast cancer cells to form colonies in soft agar and metastasize to the lungs or liver. Immunohistochemical analysis of Claudin-2 and/or Afadin expression in 206 metastatic breast cancer tumors revealed that high levels of both Claudin-2 and Afadin in primary tumors were associated with poor disease-specific survival, relapse-free survival, lung-specific relapse, and liver-specific relapse. Our findings indicate that signaling downstream from a Claudin-2/Afadin complex enables the efficient formation of breast cancer metastases. Moreover, combining Claudin-2 and Afadin as prognostic markers better predicts the potential of breast cancer to metastasize to soft tissues.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Claudina-2/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Proteínas de Microfilamentos/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Claudina-2/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/fisiopatología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/fisiopatología , Proteínas de Microfilamentos/genética , Metástasis de la Neoplasia , Dominios PDZ , Pronóstico , Análisis de Supervivencia , Células Tumorales Cultivadas
5.
J Pharmacol Exp Ther ; 387(1): 66-77, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37442619

RESUMEN

Glioblastoma is the most common and deadly primary brain tumor in adults. All glioblastoma patients receiving standard-of-care surgery-radiotherapy-chemotherapy (i.e., temozolomide (TMZ)) recur, with an average survival time of only 15 months. New approaches to the treatment of glioblastoma, including immune checkpoint blockade and oncolytic viruses, offer the possibility of improving glioblastoma outcomes and have as such been under intense study. Unfortunately, these treatment modalities have thus far failed to achieve approval. Recently, in an attempt to bolster efficacy and improve patient outcomes, regimens combining chemotherapy and immune checkpoint inhibitors have been tested in trials. Unfortunately, these efforts have not resulted in significant increases to patient survival. To better understand the various factors impacting treatment outcomes of combined TMZ and immune checkpoint blockade, we developed a systems-level, computational model that describes the interplay between glioblastoma, immune, and stromal cells with this combination treatment. Initializing our model to spatial resection patient samples labeled using imaging mass cytometry, our model's predictions show how the localization of glioblastoma cells, influence therapeutic success. We further validated these predictions in samples of brain metastases from patients given they generally respond better to checkpoint blockade compared with primary glioblastoma. Ultimately, our model provides novel insights into the mechanisms of therapeutic success of immune checkpoint inhibitors in brain tumors and delineates strategies to translate combination immunotherapy regimens more effectively into the clinic. SIGNIFICANCE STATEMENT: Extending survival times for glioblastoma patients remains a critical challenge. Although immunotherapies in combination with chemotherapy hold promise, clinical trials have not shown much success. Here, systems models calibrated to and validated against patient samples can improve preclinical and clinical studies by shedding light on the factors distinguishing responses/failures. By initializing our model with imaging mass cytometry visualization of patient samples, we elucidate how factors such as localization of glioblastoma cells and CD8+ T cell infiltration impact treatment outcomes.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Temozolomida/uso terapéutico , Glioblastoma/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Inmunoterapia/métodos , Análisis de Sistemas
6.
Cell Mol Life Sci ; 79(3): 178, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35249128

RESUMEN

Receptor tyrosine kinases (RTKs) are recognized as targets of precision medicine in human cancer upon their gene amplification or constitutive activation, resulting in increased downstream signal complexity including heterotypic crosstalk with other RTKs. The Met RTK exhibits such reciprocal crosstalk with several members of the human EGFR (HER) family of RTKs when amplified in cancer cells. We show that Met signaling converges on HER3-tyrosine phosphorylation across a panel of seven MET-amplified cancer cell lines and that HER3 is required for cancer cell expansion and oncogenic capacity in vitro and in vivo. Gene expression analysis of HER3-depleted cells identified MPZL3, encoding a single-pass transmembrane protein, as HER3-dependent effector in multiple MET-amplified cancer cell lines. MPZL3 interacts with HER3 and MPZL3 loss phenocopies HER3 loss in MET-amplified cells, while MPZL3 overexpression can partially rescue proliferation upon HER3 depletion. Together, these data support an oncogenic role for a HER3-MPZL3 axis in MET-amplified cancers.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Receptor ErbB-3/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Inestabilidad de Microsatélites , Fosforilación , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-met/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/antagonistas & inhibidores , Receptor ErbB-3/genética , Transducción de Señal/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Trasplante Heterólogo
7.
J Pathol ; 247(5): 589-605, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30680732

RESUMEN

Lung malignancies are the leading cause of cancer-related mortality. By virtue of its unique physiological function, the lung microenvironment is highly dynamic and constantly subjected to mechanical, chemical and pathogenic stimuli. Thus, the airways rely on highly organized innate defense mechanisms to rapidly protect against pathogens and maintain pulmonary homeostasis. However, in the context of lung malignancy, these defenses often provide collateral inflammatory insults that can foster tumor progression. This review summarizes the interactions between cancer cells, recruited immune cells and tissue-resident cell subpopulations, such as airway epithelial cells and alveolar macrophages, during homeostasis and disease. Furthermore, we examine the role of the lung immune landscape in response to current therapeutic interventions for cancer. Given the prevalence of lung malignancies, we propose that consideration of lung physiology as a whole is necessary to understand and treat these lethal diseases. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Progresión de la Enfermedad , Inmunidad Innata/inmunología , Neoplasias Pulmonares/inmunología , Inmunidad Adaptativa/inmunología , Hipoxia de la Célula/inmunología , Humanos , Pulmón/inmunología , Células Mieloides/inmunología , Lesiones Precancerosas/inmunología , Microambiente Tumoral/inmunología
8.
Nature ; 483(7390): 479-83, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22343889

RESUMEN

Both genome-wide genetic and epigenetic alterations are fundamentally important for the development of cancers, but the interdependence of these aberrations is poorly understood. Glioblastomas and other cancers with the CpG island methylator phenotype (CIMP) constitute a subset of tumours with extensive epigenomic aberrations and a distinct biology. Glioma CIMP (G-CIMP) is a powerful determinant of tumour pathogenicity, but the molecular basis of G-CIMP remains unresolved. Here we show that mutation of a single gene, isocitrate dehydrogenase 1 (IDH1), establishes G-CIMP by remodelling the methylome. This remodelling results in reorganization of the methylome and transcriptome. Examination of the epigenome of a large set of intermediate-grade gliomas demonstrates a distinct G-CIMP phenotype that is highly dependent on the presence of IDH mutation. Introduction of mutant IDH1 into primary human astrocytes alters specific histone marks, induces extensive DNA hypermethylation, and reshapes the methylome in a fashion that mirrors the changes observed in G-CIMP-positive lower-grade gliomas. Furthermore, the epigenomic alterations resulting from mutant IDH1 activate key gene expression programs, characterize G-CIMP-positive proneural glioblastomas but not other glioblastomas, and are predictive of improved survival. Our findings demonstrate that IDH mutation is the molecular basis of CIMP in gliomas, provide a framework for understanding oncogenesis in these gliomas, and highlight the interplay between genomic and epigenomic changes in human cancers.


Asunto(s)
Metilación de ADN/genética , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación/genética , Fenotipo , Astrocitos/citología , Astrocitos/metabolismo , Supervivencia Celular/genética , Células Cultivadas , Islas de CpG/genética , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/patología , Glioma/patología , Células HEK293 , Histonas/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Metaboloma/genética , Células Tumorales Cultivadas
9.
N Engl J Med ; 371(23): 2189-2199, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25409260

RESUMEN

BACKGROUND: Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. METHODS: We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. RESULTS: Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. CONCLUSIONS: These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Melanoma/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados , Antígeno CTLA-4/inmunología , Exoma , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Prueba de Histocompatibilidad , Humanos , Ipilimumab , Masculino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/secundario , Persona de Mediana Edad , Mutación , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/inmunología
11.
Nat Genet ; 56(1): 74-84, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066188

RESUMEN

Tissues are organized in cellular niches, the composition and interactions of which can be investigated using spatial omics technologies. However, systematic analyses of tissue composition are challenged by the scale and diversity of the data. Here we present CellCharter, an algorithmic framework to identify, characterize, and compare cellular niches in spatially resolved datasets. CellCharter outperformed existing approaches and effectively identified cellular niches across datasets generated using different technologies, and comprising hundreds of samples and millions of cells. In multiple human lung cancer cohorts, CellCharter uncovered a cellular niche composed of tumor-associated neutrophil and cancer cells expressing markers of hypoxia and cell migration. This cancer cell state was spatially segregated from more proliferative tumor cell clusters and was associated with tumor-associated neutrophil infiltration and poor prognosis in independent patient cohorts. Overall, CellCharter enables systematic analyses across data types and technologies to decode the link between spatial tissue architectures and cell plasticity.


Asunto(s)
Plasticidad de la Célula , Neoplasias , Humanos , Plasticidad de la Célula/genética , Neoplasias/genética
12.
Oncogene ; 43(26): 2015-2024, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744952

RESUMEN

Somatic copy number alterations (SCNAs) are prevalent in cancer and play a significant role in both tumorigenesis and therapeutic resistance. While focal SCNAs have been extensively studied, the impact of larger arm-level SCNAs remains poorly understood. Here, we investigated the association between arm-level SCNAs and overall survival in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer lacking targeted therapies. We identified frequent arm-level SCNAs, including 21q gain and 7p gain, which correlated with poor overall survival in TNBC patients. Further, we identified the expression of specific genes within these SCNAs associated with survival. Notably, we found that the expression of RIPK4, a gene located on 21q, exhibited a strong correlation with poor overall survival. In functional assays, we demonstrated that targeting Ripk4 in a murine lung metastatic TNBC model significantly reduced tumor burden, improved survival, and increased CD4+ and CD8+ T cell infiltration. RIPK4 enhanced the survival of triple-negative breast cancer cells at secondary sites, thereby facilitating the formation of metastatic lesions. Our findings highlight the significance of arm-level SCNAs in breast cancer progression and identify RIPK4 as a putative driver of TNBC metastasis and immunosuppression.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/mortalidad , Humanos , Femenino , Animales , Pronóstico , Ratones , Línea Celular Tumoral , Proteínas Serina-Treonina Quinasas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad
13.
Arthritis Res Ther ; 26(1): 73, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509602

RESUMEN

BACKGROUND: Pain from osteoarthritis (OA) is one of the top causes of disability worldwide, but effective treatment is lacking. Nociceptive factors are released by activated synovial macrophages in OA, but depletion of synovial macrophages paradoxically worsens inflammation and tissue damage in previous studies. Rather than depleting macrophages, we hypothesized that inhibiting macrophage activation may improve pain without increasing tissue damage. We aimed to identify key mechanisms mediating synovial macrophage activation and test the role of STAT signaling in macrophages on pain outcomes in experimental knee OA. METHODS: We induced experimental knee OA in rats via knee destabilization surgery, and performed RNA sequencing analysis on sorted synovial tissue macrophages to identify macrophage activation mechanisms. Liposomes laden with STAT1 or STAT6 inhibitors, vehicle (control), or clodronate (depletion control) were delivered selectively to synovial macrophages via serial intra-articular injections up to 12 weeks after OA induction. Treatment effects on knee and hindpaw mechanical pain sensitivity were measured during OA development, along with synovitis, cartilage damage, and synovial macrophage infiltration using histopathology and immunofluorescence. Lastly, crosstalk between drug-treated synovial tissue and articular chondrocytes was assessed in co-culture. RESULTS: The majority of pathways identified by transcriptomic analyses in OA synovial macrophages involve STAT signaling. As expected, macrophage depletion reduced pain, but increased synovial tissue fibrosis and vascularization. In contrast, STAT6 inhibition in macrophages led to marked, sustained improvements in mechanical pain sensitivity and synovial inflammation without worsening synovial or cartilage pathology. During co-culture, STAT6 inhibitor-treated synovial tissue had minimal effects on healthy chondrocyte gene expression, whereas STAT1 inhibitor-treated synovium induced changes in numerous cartilage turnover-related genes. CONCLUSION: These results suggest that STAT signaling is a major mediator of synovial macrophage activation in experimental knee OA. STAT6 may be a key mechanism mediating the release of nociceptive factors from macrophages and the development of mechanical pain sensitivity. Whereas therapeutic depletion of macrophages paradoxically increases inflammation and fibrosis, blocking STAT6-mediated synovial macrophage activation may be a novel strategy for OA-pain management without accelerating tissue damage.


Asunto(s)
Osteoartritis de la Rodilla , Factor de Transcripción STAT6 , Animales , Ratas , Fibrosis , Inflamación/patología , Activación de Macrófagos , Osteoartritis de la Rodilla/patología , Dolor/patología , Membrana Sinovial/patología , Factor de Transcripción STAT6/metabolismo
14.
JAMA Oncol ; 10(5): 621-633, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38512301

RESUMEN

Importance: To date, no meta-analyses have comprehensively assessed the association of neoadjuvant chemoimmunotherapy with clinical outcomes in non-small cell lung cancer (NSCLC) in randomized and nonrandomized settings. In addition, there exists controversy concerning the efficacy of neoadjuvant chemoimmunotherapy for patients with NSCLC with programmed cell death 1 ligand 1 (PD-L1) levels less than 1%. Objective: To compare neoadjuvant chemoimmunotherapy with chemotherapy by adverse events and surgical, pathological, and efficacy outcomes using recently published randomized clinical trials and nonrandomized trials. Data Sources: MEDLINE and Embase were systematically searched from January 1, 2013, to October 25, 2023, for all clinical trials of neoadjuvant chemoimmunotherapy and chemotherapy that included at least 10 patients. Study Selection: Observational studies and trials reporting the use of neoadjuvant radiotherapy, including chemoradiotherapy, molecular targeted therapy, or immunotherapy monotherapy, were excluded. Main Outcomes and Measures: Surgical, pathological, and efficacy end points and adverse events were pooled using a random-effects meta-analysis. Results: Among 43 eligible trials comprising 5431 patients (4020 males [74.0%]; median age range, 55-70 years), there were 8 randomized clinical trials with 3387 patients. For randomized clinical trials, pooled overall survival (hazard ratio, 0.65; 95% CI, 0.54-0.79; I2 = 0%), event-free survival (hazard ratio, 0.59; 95% CI, 0.52-0.67; I2 = 14.9%), major pathological response (risk ratio, 3.42; 95% CI, 2.83-4.15; I2 = 31.2%), and complete pathological response (risk ratio, 5.52; 95% CI, 4.25-7.15; I2 = 27.4%) favored neoadjuvant chemoimmunotherapy over neoadjuvant chemotherapy. For patients with baseline tumor PD-L1 levels less than 1%, there was a significant benefit in event-free survival for neoadjuvant chemoimmunotherapy compared with chemotherapy (hazard ratio, 0.74; 95% CI, 0.62-0.89; I2 = 0%). Conclusion and Relevance: This study found that neoadjuvant chemoimmunotherapy was superior to neoadjuvant chemotherapy across surgical, pathological, and efficacy outcomes. These findings suggest that patients with resectable NSCLC with tumor PD-L1 levels less than 1% may have an event-free survival benefit with neoadjuvant chemoimmunotherapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Inmunoterapia , Neoplasias Pulmonares , Terapia Neoadyuvante , Anciano , Humanos , Persona de Mediana Edad , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/tratamiento farmacológico , Terapia Neoadyuvante/efectos adversos , Resultado del Tratamiento
15.
Cancer Res ; 84(8): 1333-1351, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38277141

RESUMEN

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are approved for breast cancer treatment and show activity against other malignancies, including KRAS-mutant non-small cell lung cancer (NSCLC). However, the clinical efficacy of CDK4/6 inhibitors is limited due to frequent drug resistance and their largely cytostatic effects. Through a genome-wide cDNA screen, we identified that bromodomain-containing protein 4 (BRD4) overexpression conferred resistance to the CDK4/6 inhibitor palbociclib in KRAS-mutant NSCLC cells. Inhibition of BRD4, either by RNA interference or small-molecule inhibitors, synergized with palbociclib to induce senescence in NSCLC cells and tumors, and the combination prolonged survival in a KRAS-mutant NSCLC mouse model. Mechanistically, BRD4-inhibition enhanced cell-cycle arrest and reactive oxygen species (ROS) accumulation, both of which are necessary for senescence induction; this in turn elevated GPX4, a peroxidase that suppresses ROS-triggered ferroptosis. Consequently, GPX4 inhibitor treatment selectively induced ferroptotic cell death in the senescent cancer cells, resulting in tumor regression. Cotargeting CDK4/6 and BRD4 also promoted senescence and ferroptosis vulnerability in pancreatic and breast cancer cells. Together, these findings reveal therapeutic vulnerabilities and effective combinations to enhance the clinical utility of CDK4/6 inhibitors. SIGNIFICANCE: The combination of cytostatic CDK4/6 and BRD4 inhibitors induces senescent cancer cells that are primed for activation of ferroptotic cell death by targeting GPX4, providing an effective strategy for treating cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Citostáticos , Ferroptosis , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Quinasa 4 Dependiente de la Ciclina , Proteínas Nucleares/metabolismo , Citostáticos/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Pulmonares/genética , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Quinasa 6 Dependiente de la Ciclina , Inhibidores de Proteínas Quinasas/farmacología
16.
J Immunother Cancer ; 11(2)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725085

RESUMEN

BACKGROUND: Immunotherapy has revolutionized clinical outcomes for patients suffering from lung cancer, yet relatively few patients sustain long-term durable responses. Recent studies have demonstrated that the tumor immune microenvironment fosters tumorous heterogeneity and mediates both disease progression and response to immune checkpoint inhibitors (ICI). As such, there is an unmet need to elucidate the spatially defined single-cell landscape of the lung cancer microenvironment to understand the mechanisms of disease progression and identify biomarkers of response to ICI. METHODS: Here, in this study, we applied imaging mass cytometry to characterize the tumor and immunological landscape of immunotherapy response in non-small cell lung cancer by describing activated cell states, cellular interactions and neighborhoods associated with improved efficacy. We functionally validated our findings using preclinical mouse models of cancer treated with anti-programmed cell death protein-1 (PD-1) immune checkpoint blockade. RESULTS: We resolved 114,524 single cells in 27 patients treated with ICI, enabling spatial resolution of immune lineages and activation states with distinct clinical outcomes. We demonstrated that CXCL13 expression is associated with ICI efficacy in patients, and that recombinant CXCL13 potentiates anti-PD-1 response in vivo in association with increased antigen experienced T cell subsets and reduced CCR2+ monocytes. DISCUSSION: Our results provide a high-resolution molecular resource and illustrate the importance of major immune lineages as well as their functional substates in understanding the role of the tumor immune microenvironment in response to ICIs.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Quimiocina CXCL13 , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Microambiente Tumoral , Humanos
17.
Cancer Immunol Res ; 11(9): 1184-1202, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37311021

RESUMEN

The tumor-immune microenvironment (TIME) is a critical determinant of therapeutic response. However, the mechanisms regulating its modulation are not fully understood. HER2Δ16, an oncogenic splice variant of the HER2, has been implicated in breast cancer and other tumor types as a driver of tumorigenesis and metastasis. Nevertheless, the underlying mechanisms of HER2Δ16-mediated oncogenicity remain poorly understood. Here, we show that HER2∆16 expression is not exclusive to the clinically HER2+ subtype and associates with a poor clinical outcome in breast cancer. To understand how HER2 variants modulated the tumor microenvironment, we generated transgenic mouse models expressing either proto-oncogenic HER2 or HER2Δ16 in the mammary epithelium. We found that HER2∆16 tumors were immune cold, characterized by low immune infiltrate and an altered cytokine profile. Using an epithelial cell surface proteomic approach, we identified ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) as a functional regulator of the immune cold microenvironment. We generated a knock-in model of HER2Δ16 under the endogenous promoter to understand the role of Enpp1 in aggressive HER2+ breast cancer. Knockdown of Enpp1 in HER2Δ16-derived tumor cells resulted in decreased tumor growth, which correlated with increased T-cell infiltration. These findings suggest that HER2Δ16-dependent Enpp1 activation associates with aggressive HER2+ breast cancer through its immune modulatory function. Our study provides a better understanding of the mechanisms underlying HER2Δ16-mediated oncogenicity and highlights ENPP1 as a potential therapeutic target in aggressive HER2+ breast cancer.


Asunto(s)
Neoplasias , Receptor ErbB-2 , Animales , Ratones , Línea Celular Tumoral , Ratones Transgénicos , Hidrolasas Diéster Fosfóricas/genética , Proteómica , Pirofosfatasas/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
18.
Cancer Treat Res Commun ; 35: 100696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36958133

RESUMEN

BACKGROUND: Lung cancer is the leading cause of cancer death in both men and women. Quebec has the highest lung cancer mortality out of all provinces in Canada, believed to be caused by higher smoking rates. Molecular testing for lung cancer is standard of care due to the discovery of actionable driver mutations that can be targeted with tyrosine kinase inhibitors. To date, no detailed molecular testing characterization of Quebec patients with lung cancer using next generation sequencing (NGS) has been performed. MATERIALS AND METHODS: The aim of this study was to describe the genomic landscape of patients with lung cancer (n = 997) who underwent NGS molecular testing at a tertiary care center in Quebec and to correlate it with clinical and pathology variables. RESULTS: Compared to 10 other NGS studies found through a structured search strategy, our cohort had a higher prevalence of KRAS mutations (39.2%) compared to most geographical locations. Additionally, we observed a significant positive association between decreasing age and a higher proportion of KRAS G12C mutations. CONCLUSION: Overall, it remains important to assess institutional rates of actionable driver mutations to help guide governing bodies, fuel clinical trials and create benchmarks for expected rates as quality metrics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Humanos , Femenino , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/patología , Quebec/epidemiología , Proteínas Proto-Oncogénicas p21(ras)/genética , Atención a la Salud , Secuenciación de Nucleótidos de Alto Rendimiento
19.
Nat Cancer ; 4(5): 665-681, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081259

RESUMEN

Glioblastomas are aggressive primary brain tumors with an inherent resistance to T cell-centric immunotherapy due to their low mutational burden and immunosuppressive tumor microenvironment. Here we report that fractionated radiotherapy of preclinical glioblastoma models induce a tenfold increase in T cell content. Orthogonally, spatial imaging mass cytometry shows T cell enrichment in human recurrent tumors compared with matched primary glioblastoma. In glioblastoma-bearing mice, α-PD-1 treatment applied at the peak of T cell infiltration post-radiotherapy results in a modest survival benefit compared with concurrent α-PD-1 administration. Following α-PD-1 therapy, CD103+ regulatory T cells (Tregs) with upregulated lipid metabolism accumulate in the tumor microenvironment, and restrain immune checkpoint blockade response by repressing CD8+ T cell activation. Treg targeting elicits tertiary lymphoid structure formation, enhances CD4+ and CD8+ T cell frequency and function and unleashes radio-immunotherapeutic efficacy. These results support the rational design of therapeutic regimens limiting the induction of immunosuppressive feedback pathways in the context of T cell immunotherapy in glioblastoma.


Asunto(s)
Glioblastoma , Ratones , Humanos , Animales , Glioblastoma/radioterapia , Linfocitos T Reguladores/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/uso terapéutico , Recurrencia Local de Neoplasia/metabolismo , Linfocitos T CD8-positivos , Inmunoterapia/métodos , Microambiente Tumoral
20.
J Exp Med ; 220(8)2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166450

RESUMEN

Obesity is characterized by chronic systemic inflammation and enhances cancer metastasis and mortality. Obesity promotes breast cancer metastasis to lung in a neutrophil-dependent manner; however, the upstream regulatory mechanisms of this process remain unknown. Here, we show that obesity-induced monocytes underlie neutrophil activation and breast cancer lung metastasis. Using mass cytometry, obesity favors the expansion of myeloid lineages while restricting lymphoid cells within the peripheral blood. RNA sequencing and flow cytometry revealed that obesity-associated monocytes resemble professional antigen-presenting cells due to a shift in their development and exhibit enhanced MHCII expression and CXCL2 production. Monocyte induction of the CXCL2-CXCR2 axis underlies neutrophil activation and release of neutrophil extracellular traps to promote metastasis, and enhancement of this signaling axis is observed in lung metastases from obese cancer patients. Our findings provide mechanistic insight into the relationship between obesity and cancer by broadening our understanding of the interactive role that myeloid cells play in this process.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , Monocitos/patología , Neoplasias Pulmonares/patología , Obesidad/metabolismo , Células Mieloides/metabolismo , Neoplasias de la Mama/patología , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA