Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Biol ; 22(23): 8184-98, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12417722

RESUMEN

Transforming growth factor beta (TGF-beta) induces cell cycle arrest of most nontransformed epithelial cell lines. In contrast, many human carcinomas are refractory to the growth-inhibitory effect of TGF-beta. TGF-beta overexpression inhibits tumorigenesis, and abolition of TGF-beta signaling accelerates tumorigenesis, suggesting that TGF-beta acts as a tumor suppressor in mouse models of cancer. A screen to identify agents that potentiate TGF-beta-induced growth arrest demonstrated that the potential anticancer agent rapamycin cooperated with TGF-beta to induce growth arrest in multiple cell lines. Rapamycin also augmented the ability of TGF-beta to inhibit the proliferation of E2F1-, c-Myc-, and (V12)H-Ras-transformed cells, even though these cells were insensitive to TGF-beta-mediated growth arrest in the absence of rapamycin. Rapamycin potentiation of TGF-beta-induced growth arrest could not be explained by increases in TGF-beta receptor levels or rapamycin-induced dissociation of FKBP12 from the TGF-beta type I receptor. Significantly, TGF-beta and rapamycin cooperated to induce growth inhibition of human carcinoma cells that are resistant to TGF-beta-induced growth arrest, and arrest correlated with a suppression of Cdk2 kinase activity. Inhibition of Cdk2 activity was associated with increased binding of p21 and p27 to Cdk2 and decreased phosphorylation of Cdk2 on Thr(160). Increased p21 and p27 binding to Cdk2 was accompanied by decreased p130, p107, and E2F4 binding to Cdk2. Together, these results indicate that rapamycin and TGF-beta cooperate to inhibit the proliferation of nontransformed cells and cancer cells by acting in concert to inhibit Cdk2 activity.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Quinasas CDC2-CDC28 , Carcinoma/metabolismo , División Celular/fisiología , Proteínas , Sirolimus/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Transformación Celular Neoplásica , Quinasa 2 Dependiente de la Ciclina , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor de Transcripción E2F4 , Inhibidores Enzimáticos/metabolismo , Células Epiteliales/fisiología , Genes Reporteros , Inhibidores de Crecimiento/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteína p107 Similar a la del Retinoblastoma , Proteína p130 Similar a la del Retinoblastoma , Transducción de Señal/fisiología , Proteínas de Unión a Tacrolimus/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo
2.
J Biol Chem ; 277(35): 32234-42, 2002 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-12070172

RESUMEN

Hormones regulate glucose homeostasis, in part, by controlling the expression of gluconeogenic enzymes, such as phosphoenolpyruvate carboxykinase (PEPCK). Insulin and glucocorticoids reciprocally regulate PEPCK expression primarily at the level of gene transcription. We demonstrate here that glucocorticoids promote, whereas insulin disrupts, the association of CREB-binding protein (CBP) and RNA polymerase II with the hepatic PEPCK gene promoter in vivo. We also show that accessory factors, such as CCAAT/enhancer-binding protein beta (C/EBP beta), can recruit CBP to drive transcription. Insulin increases protein levels of liver-enriched transcriptional inhibitory protein (LIP), an inhibitory form of C/EBP beta, in a phosphatidylinositol 3-kinase-dependent manner. LIP concomitantly replaces liver-enriched transcriptional activator protein on the PEPCK gene promoter, which can abrogate the recruitment of CBP and polymerase II, culminating in the repression of PEPCK expression and the attenuation of hepatocellular glucose production.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/antagonistas & inhibidores , Glucosa/metabolismo , Insulina/farmacología , Fosfoenolpiruvato Carboxiquinasa (GTP)/genética , Regiones Promotoras Genéticas , ARN Polimerasa II/antagonistas & inhibidores , Transcripción Genética , Animales , Cromatina/efectos de los fármacos , Cromatina/fisiología , AMP Cíclico/farmacología , Glucocorticoides/farmacología , Glucosa/antagonistas & inhibidores , Cinética , Neoplasias Hepáticas Experimentales , Luciferasas/genética , ARN Mensajero/genética , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética/efectos de los fármacos , Transfección , Células Tumorales Cultivadas
3.
J Biol Chem ; 277(38): 34933-40, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12118006

RESUMEN

Herbs have been used for medicinal purposes, including the treatment of diabetes, for centuries. Plants containing flavonoids are used to treat diabetes in Indian medicine and the green tea flavonoid, epigallocatechin gallate (EGCG), is reported to have glucose-lowering effects in animals. We show here that the regulation of hepatic glucose production is decreased by EGCG. Furthermore, like insulin, EGCG increases tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), and it reduces phosphoenolpyruvate carboxykinase gene expression in a phosphoinositide 3-kinase-dependent manner. EGCG also mimics insulin by increasing phosphoinositide 3-kinase, mitogen-activated protein kinase, and p70(s6k) activity. EGCG differs from insulin, however, in that it affects several insulin-activated kinases with slower kinetics. Furthermore, EGCG regulates genes that encode gluconeogenic enzymes and protein-tyrosine phosphorylation by modulating the redox state of the cell. These results demonstrate that changes in the redox state may have beneficial effects for the treatment of diabetes and suggest a potential role for EGCG, or derivatives, as an antidiabetic agent.


Asunto(s)
Catequina/farmacología , Gluconeogénesis/efectos de los fármacos , Glucosa/biosíntesis , Hígado/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Catequina/análogos & derivados , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucosa-6-Fosfatasa/genética , Insulina/farmacología , Hígado/enzimología , Hígado/metabolismo , Neoplasias Hepáticas Experimentales/enzimología , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Ratas , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/farmacología , Células Tumorales Cultivadas , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA