Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurobiol Dis ; 168: 105694, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35307513

RESUMEN

Down syndrome (DS) is characterized by chronic neuroinflammation, peripheral inflammation, astrogliosis, imbalanced excitatory/inhibitory neuronal function, and cognitive deficits in both humans and mouse models. Suppression of inflammation has been proposed as a therapeutic approach to treating DS co-morbidities, including intellectual disability (DS/ID). Conversely, we discovered previously that treatment with the innate immune system stimulating cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), which has both pro- and anti-inflammatory activities, improved cognition and reduced brain pathology in a mouse model of Alzheimer's disease (AD), another inflammatory disorder, and improved cognition and reduced biomarkers of brain pathology in a phase II trial of humans with mild-to-moderate AD. To investigate the effects of GM-CSF treatment on DS/ID in the absence of AD, we assessed behavior and brain pathology in 12-14 month-old DS mice (Dp[16]1Yey) and their wild-type (WT) littermates, neither of which develop amyloid, and found that subcutaneous GM-CSF treatment (5 µg/day, five days/week, for five weeks) improved performance in the radial arm water maze in both Dp16 and WT mice compared to placebo. Dp16 mice also showed abnormal astrocyte morphology, increased percent area of GFAP staining in the hippocampus, clustering of astrocytes in the hippocampus, and reduced numbers of calretinin-positive interneurons in the entorhinal cortex and subiculum, and all of these brain pathologies were improved by GM-CSF treatment. These findings suggest that stimulating and/or modulating inflammation and the innate immune system with GM-CSF treatment may enhance cognition in both people with DS/ID and in the typical aging population.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Anciano , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Animales , Astrocitos/metabolismo , Cognición , Citocinas/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/patología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Hipocampo/metabolismo , Humanos , Sistema Inmunológico/metabolismo , Sistema Inmunológico/patología , Inflamación/tratamiento farmacológico , Inflamación/patología , Interneuronas/metabolismo , Ratones
2.
Cereb Cortex ; 27(3): 2022-2033, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-26941383

RESUMEN

Age- and menopause-related impairment in working memory mediated by the dorsolateral prefrontal cortex (dlPFC) occurs in humans and nonhuman primates. Long-term cyclic 17ß-estradiol treatment rescues cognitive deficits in aged ovariectomized rhesus monkeys while restoring highly plastic synapses. Here we tested whether distributions of G protein-coupled estrogen receptor 1 (GPER1) within monkey layer III dlPFC synapses are sensitive to age and estradiol, and coupled to cognitive function. Ovariectomized young and aged monkeys administered vehicle or estradiol were first tested on a delayed response test of working memory. Then, quantitative serial section immunoelectron microscopy was used to determine the distributions of synaptic GPER1. GPER1-containing nonperforated axospinous synapse density was reduced with age, and partially restored with estrogen treatment. The majority of synapses expressed GPER1, which was predominately localized to presynaptic cytoplasm and mitochondria. GPER1 was also abundant at plasmalemmas, and within cytoplasmic and postsynaptic density (PSD) domains of dendritic spines. GPER1 levels did not differ with age or treatment, and none of the variables examined were tightly associated with cognitive function. However, greater representation of GPER1 subjacent to the PSD accompanied higher synapse density. These data suggest that GPER1 is positioned to support diverse functions key to synaptic plasticity in monkey dlPFC.


Asunto(s)
Envejecimiento/metabolismo , Receptor alfa de Estrógeno/metabolismo , Menopausia/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Envejecimiento/patología , Animales , Estradiol/administración & dosificación , Estrógenos/administración & dosificación , Femenino , Terapia de Reemplazo de Hormonas , Inmunohistoquímica , Macaca mulatta , Microscopía Inmunoelectrónica , Plasticidad Neuronal/fisiología , Ovariectomía , Corteza Prefrontal/patología , Sinapsis/patología
3.
Am J Pathol ; 176(1): 353-68, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20008141

RESUMEN

Mutations in the presenilin 1 (PS1) gene are the most commonly recognized cause of familial Alzheimer's disease (FAD). Besides senile plaques, neurofibrillary tangles, and neuronal loss, Alzheimer's disease (AD) is also accompanied by vascular pathology. Here we describe an age-related vascular pathology in two lines of PS1 FAD-mutant transgenic mice that mimics many features of the vascular pathology seen in AD. The pathology was especially prominent in the microvasculature whose vessels became thinned and irregular with the appearance of many abnormally looped vessels as well as string vessels. Stereologic assessments revealed a reduction of the microvasculature in the hippocampus that was accompanied by hippocampal atrophy. The vascular changes were not congophilic. Yet, despite the lack of congophilia, penetrating vessels at the cortical surface were often abnormal morphologically and microhemorrhages sometimes occurred. Altered immunostaining of blood vessels with basement membrane-associated antigens was an early feature of the microangiopathy and was associated with thickening of the vascular basal laminae and endothelial cell alterations that were visible ultrastructurally. Interestingly, although the FAD-mutant transgene was expressed in neurons in both lines of mice, there was no detectable expression in vascular endothelial cells or glial cells. These studies thus have implications for the role of neuronal to vascular signaling in the pathogenesis of the vascular pathology associated with AD.


Asunto(s)
Envejecimiento/patología , Enfermedad de Alzheimer/genética , Vasos Sanguíneos/patología , Mutación/genética , Presenilina-1/metabolismo , Envejecimiento/metabolismo , Animales , Atrofia , Membrana Basal/metabolismo , Vasos Sanguíneos/anomalías , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/ultraestructura , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/ultraestructura , Cromosomas Artificiales de Bacteriófagos P1/genética , Dendritas/metabolismo , Dendritas/patología , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microvasos/anomalías , Microvasos/metabolismo , Microvasos/patología , Microvasos/ultraestructura , Proteínas Mutantes/metabolismo , Transgenes/genética
4.
Brain Res ; 1209: 115-27, 2008 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-18402929

RESUMEN

Numerous studies have shown that neuronal plasticity in the hippocampus and neocortex is regulated by estrogen and that aromatase, the key enzyme for estrogen biosynthesis, is present in cerebral cortex. Although the expression pattern of aromatase mRNA has been described in the monkey brain, its precise cellular distribution has not been determined. In addition, the degree to which neuronal aromatase is affected by gonadal estrogen has not been investigated. In this study, we examined the immunohistochemical distribution of aromatase in young ovariectomized female rhesus monkeys with or without long-term cyclic estradiol treatment. Both experimental groups showed that aromatase is localized in a large population of CA1-3 pyramidal cells, in granule cells of the dentate gyrus and in some interneurons in which it was co-expressed with the calcium-binding proteins calbindin, calretinin, and parvalbumin. Moreover, numerous pyramidal cells were immunoreactive for aromatase in the neocortex, whereas only small subpopulations of neocortical interneurons were immunoreactive for aromatase. The widespread expression of the protein in a large neuronal population suggests that local intraneuroral estrogen synthesis may contribute to estrogen-induced synaptic plasticity in monkey hippocampus and neocortex of female rhesus monkeys. In addition, the apparent absence of obvious differences in aromatase distribution between the two experimental groups suggests that these localization patterns are not dependent on plasma estradiol levels.


Asunto(s)
Aromatasa/metabolismo , Hipocampo/enzimología , Macaca mulatta , Neocórtex/enzimología , Lóbulo Temporal/enzimología , Animales , Proteínas de Unión al Calcio/metabolismo , Giro Dentado/citología , Giro Dentado/enzimología , Estradiol/metabolismo , Estradiol/farmacología , Estrógenos/biosíntesis , Femenino , Hipocampo/citología , Interneuronas/citología , Interneuronas/enzimología , Neocórtex/citología , Plasticidad Neuronal , Células Piramidales/citología , Células Piramidales/enzimología , Especificidad de la Especie , Lóbulo Temporal/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA