Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Curr Cardiol Rep ; 25(7): 615-620, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37266821

RESUMEN

PURPOSE OF REVIEW: This review explores efforts made over the previous three decades to determine mechanisms of cardiomyocyte cell division. Many investigators have explored cell therapy strategies in animal models and clinical trials over the past 2 decades with marginal results thus far in clinical testing. Hence, there is a greater focus now on strategies to induce cardiomyocyte proliferation. RECENT FINDINGS: Reports to induce reactivation of the cardiomyocyte cell cycle predated the focus on cell therapy, and we summarize the literature on this topic, which began with the very first transgenic mouse studies in cardiovascular science. These earlier studies form the foundation for the use of cell cycle manipulation in cardiac repair and should inform current and future investigations with respect to rigor of assessment in the degree of cardiomyocyte cell division and gold standard measures of cardiac functional improvement.


Asunto(s)
Corazón , Miocitos Cardíacos , Animales , Ratones , Humanos , Miocitos Cardíacos/fisiología , Proliferación Celular , Corazón/fisiología , Ciclo Celular/fisiología , Ratones Transgénicos , Regeneración
2.
Hum Mol Genet ; 28(3): 351-371, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239736

RESUMEN

Laminopathies are diseases caused by dominant mutations in the human LMNA gene encoding A-type lamins. Lamins are intermediate filaments that line the inner nuclear membrane, provide structural support for the nucleus and regulate gene expression. Drosophila melanogaster models of skeletal muscle laminopathies were developed to investigate the pathological defects caused by mutant lamins and identify potential therapeutic targets. Human disease-causing LMNA mutations were modeled in Drosophila Lamin C (LamC) and expressed in indirect flight muscle (IFM). IFM-specific expression of mutant, but not wild-type LamC, caused held-up wings indicative of myofibrillar defects. Analyses of the muscles revealed cytoplasmic aggregates of nuclear envelope (NE) proteins, nuclear and mitochondrial dysmorphology, myofibrillar disorganization and up-regulation of the autophagy cargo receptor p62. We hypothesized that the cytoplasmic aggregates of NE proteins trigger signaling pathways that alter cellular homeostasis, causing muscle dysfunction. In support of this hypothesis, transcriptomics data from human muscle biopsy tissue revealed misregulation of the AMP-activated protein kinase (AMPK)/4E-binding protein 1 (4E-BP1)/autophagy/proteostatic pathways. Ribosomal protein S6K (S6K) messenger RNA (mRNA) levels were increased and AMPKα and mRNAs encoding downstream targets were decreased in muscles expressing mutant LMNA relative controls. The Drosophila laminopathy models were used to determine if altering the levels of these factors modulated muscle pathology. Muscle-specific over-expression of AMPKα and down-stream targets 4E-BP, Forkhead box transcription factors O (Foxo) and Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), as well as inhibition of S6K, suppressed the held-up wing phenotype, myofibrillar defects and LamC aggregation. These findings provide novel insights on mutant LMNA-based disease mechanisms and identify potential targets for drug therapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Laminas/genética , Laminas/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/fisiología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Proteínas de la Membrana/genética , Modelos Animales , Músculo Esquelético/fisiología , Mutación , Membrana Nuclear/metabolismo , Membrana Nuclear/fisiología , Factores de Iniciación de Péptidos/metabolismo , Factores de Iniciación de Péptidos/fisiología , Fenotipo , Transducción de Señal
3.
Stem Cells ; 37(4): 555-567, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30629785

RESUMEN

Senescence-associated dysfunction deleteriously affects biological activities of human c-Kit+ cardiac progenitor cells (hCPCs), particularly under conditions of in vitro culture. In comparison, preservation of self-renewal and decreases in mitochondrial reactive oxygen species (ROS) are characteristics of murine CPCs in vivo that reside within hypoxic niches. Recapitulating hypoxic niche oxygen tension conditions of ∼1% O2 in vitro for expansion of hCPCs rather than typical normoxic cell culture conditions (21% O2 ) could provide significant improvement of functional and biological activities of hCPCs. hCPCs were isolated and expanded under permanent hypoxic (hCPC-1%) or normoxic (hCPC-21%) conditions from left ventricular tissue explants collected during left ventricular assist device implantation. hCPC-1% exhibit increased self-renewal and suppression of senescence characteristics relative to hCPC-21%. Oxidative stress contributed to higher susceptibility to apoptosis, as well as decreased mitochondrial function in hCPC-21%. Hypoxia prevented accumulation of dysfunctional mitochondria, supporting higher oxygen consumption rates and mitochondrial membrane potential. Mitochondrial ROS was an upstream mediator of senescence since treatment of hCPC-1% with mitochondrial inhibitor antimycin A recapitulated mitochondrial dysfunction and senescence observed in hCPC-21%. NAD+ /NADH ratio and autophagic flux, which are key factors for mitochondrial function, were higher in hCPC-1%, but hCPC-21% were highly dependent on BNIP3/NIX-mediated mitophagy to maintain mitochondrial function. Overall, results demonstrate that supraphysiological oxygen tension during in vitro expansion initiates a downward spiral of oxidative stress, mitochondrial dysfunction, and cellular energy imbalance culminating in early proliferation arrest of hCPCs. Senescence is inhibited by preventing ROS through hypoxic culture of hCPCs. Stem Cells 2019;37:555-567.


Asunto(s)
Senescencia Celular/fisiología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Células Madre/metabolismo , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Humanos , Mitocondrias
4.
Circ Res ; 122(8): 1151-1163, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650632

RESUMEN

Cardiovascular regenerative therapies are pursued on both basic and translational levels. Although efficacy and value of cell therapy for myocardial regeneration can be debated, there is a consensus that profound deficits in mechanistic understanding limit advances, optimization, and implementation. In collaboration with the TACTICS (Transnational Alliance for Regenerative Therapies in Cardiovascular Syndromes), this review overviews several pivotal aspects of biological processes impinging on cardiac maintenance, repair, and regeneration. The goal of summarizing current mechanistic understanding is to prompt innovative directions for fundamental studies delineating cellular reparative and regenerative processes. Empowering myocardial regenerative interventions, whether dependent on endogenous processes or exogenously delivered repair agents, ultimately depends on mastering mechanisms and novel strategies that take advantage of rather than being limited by inherent myocardial biology.


Asunto(s)
Cardiomiopatías/fisiopatología , Corazón/fisiología , Regeneración , Envejecimiento/fisiología , Animales , Apoptosis , Autofagia , Cardiomiopatías/terapia , Comunicación Celular , Ciclo Celular , Activación de Complemento , Células Endoteliales/citología , Células Endoteliales/fisiología , Regulación de la Expresión Génica/fisiología , Humanos , Inflamación , Mamíferos/fisiología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/terapia , Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Neovascularización Fisiológica , Neutrófilos/inmunología , Comunicación Paracrina/fisiología , Medicina Regenerativa/tendencias
5.
Circ Res ; 123(1): 57-72, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29636378

RESUMEN

RATIONALE: Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. OBJECTIVE: The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. METHODS AND RESULTS: In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart, upregulating c-Kit expression in response to pathological stress. CONCLUSIONS: c-Kit myocardial biology is more complex and varied than previously appreciated or documented, demonstrating validity in multiple points of coexisting yet heretofore seemingly irreconcilable published findings.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/fisiología , Proteínas Proto-Oncogénicas c-kit/fisiología , Células Madre/fisiología , Animales , Proliferación Celular/fisiología , Supervivencia Celular/fisiología , Receptores ErbB/metabolismo , Técnicas de Transferencia de Gen , Humanos , Ratones , Ratones Transgénicos , Modelos Animales , Miocardio/citología , Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Transducción de Señal , Células Madre/metabolismo , Estrés Fisiológico
6.
J Mol Cell Cardiol ; 127: 154-164, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30571978

RESUMEN

RATIONALE: Understanding and manipulating the cardiomyocyte cell cycle has been the focus of decades of research, however the ultimate goal of activating mitotic activity in adult mammalian cardiomyocytes remains elusive and controversial. The relentless pursuit of controlling cardiomyocyte mitosis has been complicated and obfuscated by a multitude of indices used as evidence of cardiomyocyte cell cycle activity that lack clear identification of cardiomyocyte "proliferation" versus cell cycle progression, endoreplication, endomitosis, and even DNA damage. Unambiguous appreciation of the complexity of cardiomyocyte replication that avoids oversimplification and misinterpretation is desperately needed. OBJECTIVE: Track cardiomyocyte cell cycle activity and authenticate fidelity of proliferation markers as indicators of de novo cardiomyogenesis in post-mitotic cardiomyocytes. METHODS AND RESULTS: Cardiomyocytes expressing the FUCCI construct driven by the α-myosin heavy chain promoter were readily and uniformly detected through the myocardium of transgenic mice. Cardiomyocyte cell cycle activity peaks at postnatal day 2 and rapidly declines thereafter with almost all cardiomyocytes arrested at the G1/S cell cycle transition. Myocardial infarction injury in adult hearts prompts transient small increases in myocytes progressing through cell cycle without concurrent mitotic activity, indicating lack of cardiomyogenesis. In comparison, cardiomyogenic activity during early postnatal development correlated with coincidence of FUCCI and cKit+ cells that were undetectable in the adult myocardium. CONCLUSIONS: Cardiomyocyte-specific expression of Fluorescence Ubiquitination-based Cell Cycle Indicators (FUCCI) reveals previously unappreciated aspects of cardiomyocyte cell cycle arrest and biological activity in postnatal development and in response to pathologic damage. Compared to many other methods and model systems, the FUCCI transgenic (FUCCI-Tg) mouse represents a valuable tool to unambiguously track cell cycle and proliferation of the entire cardiomyocyte population in the adult murine heart. FUCCI-Tg provides a desperately needed novel approach in the armamentarium of tools to validate cardiomyocyte proliferative activity that will reveal cell cycle progression, discriminate between cycle progression, DNA replication, and proliferation, and provide important insight for enhancing cardiomyocyte proliferation in the context of adult myocardial tissue.


Asunto(s)
Ciclo Celular , Técnicas de Transferencia de Gen , Corazón/fisiología , Miocitos Cardíacos/citología , Ubiquitinación , Animales , Animales Recién Nacidos , Puntos de Control del Ciclo Celular , División Celular , Proliferación Celular , Células Cultivadas , Fluorescencia , Ratones Transgénicos , Especificidad de Órganos
7.
Circ Res ; 121(2): 113-124, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28446444

RESUMEN

RATIONALE: The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. OBJECTIVE: Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. METHODS AND RESULTS: Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit+ cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit- mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit+ population is further enriched by selection for a CD133+ endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. CONCLUSIONS: Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients.


Asunto(s)
Células Endoteliales , Citometría de Flujo/métodos , Células Madre Mesenquimatosas , Miocardio/citología , Miocitos Cardíacos , Biopsia , Separación Celular/métodos , Células Cultivadas , Células Endoteliales/fisiología , Corazón/fisiología , Humanos , Células Madre Mesenquimatosas/fisiología , Miocitos Cardíacos/fisiología , Células Madre/fisiología
8.
J Biol Chem ; 290(42): 25411-26, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26324717

RESUMEN

Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) signaling in the heart regulates cardiomyocyte contractility and growth in response to elevated intracellular Ca(2+). The δB isoform of CaMKII is the predominant nuclear splice variant in the adult heart and regulates cardiomyocyte hypertrophic gene expression by signaling to the histone deacetylase HDAC4. However, the role of CaMKIIδ in cardiac progenitor cells (CPCs) has not been previously explored. During post-natal growth endogenous CPCs display primarily cytosolic CaMKIIδ, which localizes to the nuclear compartment of CPCs after myocardial infarction injury. CPCs undergoing early differentiation in vitro increase levels of CaMKIIδB in the nuclear compartment where the kinase may contribute to the regulation of CPC commitment. CPCs modified with lentiviral-based constructs to overexpress CaMKIIδB (CPCeδB) have reduced proliferative rate compared with CPCs expressing eGFP alone (CPCe). Additionally, stable expression of CaMKIIδB promotes distinct morphological changes such as increased cell surface area and length of cells compared with CPCe. CPCeδB are resistant to oxidative stress induced by hydrogen peroxide (H2O2) relative to CPCe, whereas knockdown of CaMKIIδB resulted in an up-regulation of cell death and cellular senescence markers compared with scrambled treated controls. Dexamethasone (Dex) treatment increased mRNA and protein expression of cardiomyogenic markers cardiac troponin T and α-smooth muscle actin in CPCeδB compared with CPCe, suggesting increased differentiation. Therefore, CaMKIIδB may serve as a novel modulatory protein to enhance CPC survival and commitment into the cardiac and smooth muscle lineages.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Linaje de la Célula , Núcleo Celular/enzimología , Supervivencia Celular , Isoenzimas/metabolismo , Miocitos Cardíacos/citología , Transducción de Señal , Células Madre/citología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Técnicas de Silenciamiento del Gen , Isoenzimas/genética , Masculino , Ratones , Miocitos Cardíacos/enzimología , Células Madre/enzimología
10.
Methods Mol Biol ; 2803: 137-144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676890

RESUMEN

Myocardial infarction (MI) in mice is a widely used surgical model in preclinical cardiac repair studies to recapitulate human cardiovascular ischemic disease. Induction of reproducible infarct size is crucial for quantitative and analytical purpose. Here we describe a quick and reliable method to induce consistent infarct size in mice in less than a minute.


Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio , Animales , Infarto del Miocardio/patología , Ratones , Humanos , Miocardio/patología , Miocardio/metabolismo
11.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37577721

RESUMEN

We report a unique population of multipotent cells isolated from the term human placenta, for the first time, that can differentiate into cardiomyocytes and vascular cells with clonal proliferative ability, migratory ability, and trancriptomic evidence of immune privilege. Caudal-type homeobox-2 (CDX2) is a conserved factor that regulates trophectoderm formation and placentation during early embryonic development but has not previously been implicated in developmentally conserved regenerative mechanisms. We had earlier reported that Cdx2 lineage cells in the mouse placenta are capable of restoring cardiac function after intravenous delivery in male mice with experimental cardiac injury (myocardial infarction). Here we demonstrate that CDX2-expressing cells are prevalent in the human chorion and are poised for cardiovascular differentiation. We examined the term placentas from 106 healthy patients and showed that isolated CDX2 cells can spontaneously differentiate into cardiomyocytes, functional vascular cells, and retain homing ability in vitro. Functional annotation from transcriptomics analysis supports enhanced cardiogenesis, vasculogenesis, immune modulation, and chemotaxis gene signatures in CDX2 cells. CDX2 cells can be clonally propagated in culture with retention of cardiovascular differentiation. Our data supports further use of this accessible and ethically feasible cell source in the design of therapeutic strategies for cardiovascular disease.

12.
Circ Arrhythm Electrophysiol ; 17(7): e012854, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38758741

RESUMEN

BACKGROUND: Unlike conventional microsecond pulsed electrical fields that primarily target the cell membranes, nanosecond pulses are thought to primarily electroporate intracellular organelles. We conducted a comprehensive preclinical assessment of catheter-based endocardial nanosecond pulsed field ablation in swine. METHODS: A novel endocardial nanosecond pulsed field ablation system was evaluated in a total of 25 swine. Using either a low-dose (5-second duration) or high-dose (15-second duration) strategy, thoracic veins and discrete atrial and ventricular sites were ablated. Predetermined survival periods were <1 (n=1), ≈2 (n=7), ≈7 (n=6), 14 (n=2), or ≈28 (n=9) days, and venous isolation was assessed before euthanasia. Safety assessments included evaluation of esophageal effects, phrenic nerve function, and changes in venous caliber. All tissues were subject to careful gross pathological and histopathologic examination. RESULTS: All (100%) veins (13 low-dose, 34 high-dose) were acutely isolated, and all reassessed veins (6 low-dose, 15 high-dose) were durably isolated. All examined vein lesions (10 low-dose, 22 high-dose) were transmural. Vein diameters (n=15) were not significantly changed. Of the animals assessed for phrenic palsy (n=9), 3 (33%) demonstrated only transient palsy. There were no differences between dosing strategies. Thirteen mitral isthmus lesions were analyzed, and all 13 (100%) were transmural (depth, 6.4±0.4 mm). Ventricular lesions were 14.7±4.5 mm wide and 7.1±1.3 mm deep, with high-dose lesions deeper than low-dose (7.9±1.2 versus 6.2±0.8 mm; P=0.007). The esophagus revealed nontransmural adventitial surface lesions in 5 of 5 (100%) animals euthanized early (2 days) post-ablation. In the 10 animals euthanized later (14-28 days), all animals demonstrated significant esophageal healing-8 with complete resolution, and 2 with only trace fibrosis. CONCLUSIONS: A novel, endocardial nanosecond pulsed field ablation system provides acute and durable venous isolation and linear lesions. Transient phrenic injury and nontransmural esophageal lesions can occur with worst-case assessments suggesting limits to pulsed field ablation tissue selectivity and the need for dedicated assessments during clinical studies.


Asunto(s)
Estudios de Factibilidad , Nervio Frénico , Animales , Porcinos , Factores de Tiempo , Miocardio/patología , Ablación por Catéter/métodos , Ablación por Catéter/efectos adversos , Venas/fisiopatología , Modelos Animales , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/patología , Esófago , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/patología
13.
Heart Rhythm ; 21(4): 389-396, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38159790

RESUMEN

BACKGROUND: Ultrastructural findings immediately after pulsed field ablation (PFA) of the myocardium have not been described. OBJECTIVES: The purpose of this study was to elucidate ultrastructural characteristics and differences between microsecond PFA at the 1- and 4-hour timepoints after pulse delivery and to compare them to irrigated radiofrequency ablation (RFA) lesions. METHODS: Healthy swine underwent endocardial PFA or RFA followed by necropsy. Discrete microsecond PFA and irrigated RFA lesions were created in the ventricles with a lattice tip ablation catheter. Lesions were delivered in a manner so as to allow sampling to occur 1 and 4 hours after ablation. All lesions were located at necropsy, and samples were carefully obtained from within the lesion core, lesion periphery, and adjacent healthy myocardium. Transmission electron microscopic assessment was performed after fixation using paraformaldehyde and glutaraldehyde. RESULTS: One hour after microsecond PFA delivery, myocytes were noted to be significantly and uniformly disrupted. Clustered, misaligned, swollen mitochondria coupled with degenerating nuclei and condensed chromatin were visualized. These findings progressed over the subsequent few hours with worsening edema. Similar changes were seen with RFA but reduced in severity. However, there was prominent extravasation of red blood cells with occlusion of capillaries that was not seen in PFA. At the lesion periphery, an abrupt change in the degree of myocyte damage was observed with PFA but not RFA. CONCLUSION: Transmission electron microscopy demonstrates evidence of widespread destruction of myocytes as early as an hour after PFA and corroborates known histologic features such as sparing of vessels and sharp lesion margins.


Asunto(s)
Fibrilación Atrial , Ablación por Catéter , Ablación por Radiofrecuencia , Porcinos , Animales , Ablación por Catéter/efectos adversos , Miocardio , Ventrículos Cardíacos/cirugía , Frecuencia Cardíaca , Fibrilación Atrial/cirugía
14.
Circ Arrhythm Electrophysiol ; 16(1): e011369, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595634

RESUMEN

BACKGROUND: Pulsed field ablation (PFA) has recently been shown to penetrate ischemic scar, but details on its efficacy, risk of arrhythmias, and imaging insights are lacking. In a porcine model of myocardial scar, we studied the ability of ventricular PFA to penetrate scarred tissue, induce ventricular arrhythmias, and assess the influence of QRS gating during pulse delivery. METHODS: Of a total of 6 swine, 5 underwent coronary occlusion and 1 underwent radiofrequency ablation to create infarct scar and iatrogenic scar models, respectively. Two additional swine served as healthy controls. An 8 Fr focal PFA catheter was used to deliver bipolar, biphasic PFA (2.0 kV) lesions guided by electroanatomical mapping, fluoroscopy, and intracardiac echocardiography over both scarred and healthy myocardium. Swine underwent magnetic resonance imaging 2-7 days post-PFA. RESULTS: PFA successfully penetrated scar without significant difference in lesion depth between lesion at the infarct border (5.9±1.0 mm, n=41) and healthy myocardium (5.7±1.3 mm, n=26; P=0.53). PFA penetration of both infarct and iatrogenic radiofrequency abalation scar was observed in all examined sections. Sustained ventricular arrhythmias requiring defibrillation occurred in 4 of 187 (2.1%) ungated applications, whereas no ventricular arrhythmias occurred during gated PFA applications (0 of 64 [0%]). Dark-blood late-gadolinium-enhanced sequences allowed for improved endocardial border detection as well as lesion boundaries compared with conventional bright-blood late-gadolinium-enhanced sequences. CONCLUSIONS: PFA penetrates infarct and iatrogenic scar successfully to create deep lesions. Gated delivery eliminates the occurrence of ventricular arrhythmias observed with ungated porcine PFA. Optimized magnetic resonance imaging sequences can be helpful in detecting lesion boundaries.


Asunto(s)
Ablación por Catéter , Infarto del Miocardio , Taquicardia Ventricular , Animales , Porcinos , Cicatriz , Gadolinio , Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/cirugía , Electrofisiología Cardíaca , Enfermedad Iatrogénica , Ablación por Catéter/efectos adversos , Ablación por Catéter/métodos , Taquicardia Ventricular/diagnóstico por imagen , Taquicardia Ventricular/cirugía
15.
Circ Arrhythm Electrophysiol ; 15(9): e011120, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36074657

RESUMEN

BACKGROUND: Our understanding of catheter-based pulsed field ablation (PFA) of the ventricular myocardium is limited. We conducted a series of exploratory evaluations of ventricular PFA in swine ventricles. METHODS: A focal lattice-tip catheter was used to deliver proprietary biphasic monopolar PFA applications to swine ventricles under general anesthesia, with guidance from electroanatomical mapping, fluoroscopy, and intracardiac echocardiography. We conducted experiments to assess the impact of (1) delivery repetition (2×, 3×, or 4×) at each location, (2) epicardial PFA delivery, and (3) confluent areas of shallow healed endocardial scar created by prior PFA (4 weeks earlier) on subsequent endocardial PFA. Additional assessments included PFA optimized for the ventricle, lesion visualization by intracardiac echocardiography imaging, and immunohistochemical insights. RESULTS: Experiment no. 1: lesions (n=49) were larger with delivery repetition of either 4× or 3× versus 2×: length 17.6±3.9 or 14.2±2.0 versus 12.7±2.0 mm (P<0.01, P=0.22), width 13.4±1.8 or 10.6±1.3 versus 10.5±1.1 mm (P<0.01, P=1.00), and depth 6.1±2.1 or 5.1±1.3 versus 4.2±1.0 mm (P<0.01, P=0.21). Experiment no. 2: epicardial lesions (n=18) were reliably created and comparable to endocardial lesions: length 24.6±9.7 mm (n=5), width 15.6±4.6 mm, and depth 4.5±3.7 mm. Experiment no. 3: PFA (n=16) was able to penetrate to a depth of 4.8 (interquartile range, 4.5-5.4) mm in healthy myocardium versus 5.6 (interquartile range, 3.6-6.6) mm in adjacent healed endocardial scar (P=0.79), suggesting that superficial scar does not significantly impair PFA. Finally, we demonstrate, PFA optimized for the ventricle yielded adequate lesion dimensions, can result in myocardial activation, can be visualized by intracardiac echocardiography, and have unique immunohistochemical characteristics. CONCLUSIONS: This in vivo evaluation offers insights into the behavior of endocardial or epicardial PFA delivered using the lattice-tip catheter to normal or scarred porcine ventricular myocardium, thereby setting the stage for future clinical studies.


Asunto(s)
Ablación por Catéter , Cicatriz , Animales , Ablación por Catéter/métodos , Catéteres , Cicatriz/patología , Endocardio/diagnóstico por imagen , Endocardio/patología , Endocardio/cirugía , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/cirugía , Porcinos
16.
Cardiovasc Res ; 117(1): 201-211, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32176281

RESUMEN

AIMS: Telomere attrition in cardiomyocytes is associated with decreased contractility, cellular senescence, and up-regulation of proapoptotic transcription factors. Pim1 is a cardioprotective kinase that antagonizes the aging phenotype of cardiomyocytes and delays cellular senescence by maintaining telomere length, but the mechanism remains unknown. Another pathway responsible for regulating telomere length is the transforming growth factor beta (TGFß) signalling pathway where inhibiting TGFß signalling maintains telomere length. The relationship between Pim1 and TGFß has not been explored. This study delineates the mechanism of telomere length regulation by the interplay between Pim1 and components of TGFß signalling pathways in proliferating A549 cells and post-mitotic cardiomyocytes. METHODS AND RESULTS: Telomere length was maintained by lentiviral-mediated overexpression of PIM1 and inhibition of TGFß signalling in A549 cells. Telomere length maintenance was further demonstrated in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1 and by pharmacological inhibition of TGFß signalling. Mechanistically, Pim1 inhibited phosphorylation of Smad2, preventing its translocation into the nucleus and repressing expression of TGFß pathway genes. CONCLUSION: Pim1 maintains telomere lengths in cardiomyocytes by inhibiting phosphorylation of the TGFß pathway downstream effectors Smad2 and Smad3, which prevents repression of telomerase reverse transcriptase. Findings from this study demonstrate a novel mechanism of telomere length maintenance and provide a potential target for preserving cardiac function.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Homeostasis del Telómero/efectos de los fármacos , Factor de Crecimiento Transformador beta1/farmacología , Células A549 , Animales , Humanos , Masculino , Ratones Noqueados , Miocitos Cardíacos/enzimología , Fosforilación , Proteínas Proto-Oncogénicas c-pim-1/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Telomerasa/metabolismo
17.
Cells ; 9(9)2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32878131

RESUMEN

Enhancing cardiomyocyte survival is crucial to blunt deterioration of myocardial structure and function following pathological damage. PIM1 (Proviral Insertion site in Murine leukemia virus (PIM) kinase 1) is a cardioprotective serine threonine kinase that promotes cardiomyocyte survival and antagonizes senescence through multiple concurrent molecular signaling cascades. In hematopoietic stem cells, PIM1 interacts with the receptor tyrosine kinase c-Kit upstream of the ERK (Extracellular signal-Regulated Kinase) and Akt signaling pathways involved in cell proliferation and survival. The relationship between PIM1 and c-Kit activity has not been explored in the myocardial context. This study delineates the interaction between PIM1 and c-Kit leading to enhanced protection of cardiomyocytes from stress. Elevated c-Kit expression is induced in isolated cardiomyocytes from mice with cardiac-specific overexpression of PIM1. Co-immunoprecipitation and proximity ligation assay reveal protein-protein interaction between PIM1 and c-Kit. Following treatment with Stem Cell Factor, PIM1-overexpressing cardiomyocytes display elevated ERK activity consistent with c-Kit receptor activation. Functionally, elevated c-Kit expression confers enhanced protection against oxidative stress in vitro. This study identifies the mechanistic relationship between PIM1 and c-Kit in cardiomyocytes, demonstrating another facet of cardioprotection regulated by PIM1 kinase.


Asunto(s)
Miocitos Cardíacos/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , Animales , Humanos , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-pim-1/biosíntesis , Proteínas Proto-Oncogénicas c-pim-1/genética , Regulación hacia Arriba
18.
Stem Cells Transl Med ; 9(5): 620-635, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31891237

RESUMEN

Cardiac interstitial cells (CICs) perform essential roles in myocardial biology through preservation of homeostasis as well as response to injury or stress. Studies of murine CIC biology reveal remarkable plasticity in terms of transcriptional reprogramming and ploidy state with important implications for function. Despite over a decade of characterization and in vivo utilization of adult c-Kit+ CIC (cCIC), adaptability and functional responses upon delivery to adult mammalian hearts remain poorly understood. Limitations of characterizing cCIC biology following in vitro expansion and adoptive transfer into the adult heart were circumvented by delivery of the donated cells into early cardiogenic environments of embryonic, fetal, and early postnatal developing hearts. These three developmental stages were permissive for retention and persistence, enabling phenotypic evaluation of in vitro expanded cCICs after delivery as well as tissue response following introduction to the host environment. Embryonic blastocyst environment prompted cCIC integration into trophectoderm as well as persistence in amniochorionic membrane. Delivery to fetal myocardium yielded cCIC perivascular localization with fibroblast-like phenotype, similar to cCICs introduced to postnatal P3 heart with persistent cell cycle activity for up to 4 weeks. Fibroblast-like phenotype of exogenously transferred cCICs in fetal and postnatal cardiogenic environments is consistent with inability to contribute directly toward cardiogenesis and lack of functional integration with host myocardium. In contrast, cCICs incorporation into extra-embryonic membranes is consistent with fate of polyploid cells in blastocysts. These findings provide insight into cCIC biology, their inherent predisposition toward fibroblast fates in cardiogenic environments, and remarkable participation in extra-embryonic tissue formation.


Asunto(s)
Miocardio/patología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo , Técnicas de Cultivo de Célula , Femenino , Humanos , Masculino , Miocitos Cardíacos/citología , Células Madre/citología
19.
Nat Commun ; 11(1): 3955, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32769998

RESUMEN

Cellular therapy to treat heart failure is an ongoing focus of intense research, but progress toward structural and functional recovery remains modest. Engineered augmentation of established cellular effectors overcomes impediments to enhance reparative activity. Such 'next generation' implementation includes delivery of combinatorial cell populations exerting synergistic effects. Concurrent isolation and expansion of three distinct cardiac-derived interstitial cell types from human heart tissue, previously reported by our group, prompted design of a 3D structure that maximizes cellular interaction, allows for defined cell ratios, controls size, enables injectability, and minimizes cell loss. Herein, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs) and c-Kit+ cardiac interstitial cells (cCICs) when cultured together spontaneously form scaffold-free 3D microenvironments termed CardioClusters. scRNA-Seq profiling reveals CardioCluster expression of stem cell-relevant factors, adhesion/extracellular-matrix molecules, and cytokines, while maintaining a more native transcriptome similar to endogenous cardiac cells. CardioCluster intramyocardial delivery improves cell retention and capillary density with preservation of cardiomyocyte size and long-term cardiac function in a murine infarction model followed 20 weeks. CardioCluster utilization in this preclinical setting establish fundamental insights, laying the framework for optimization in cell-based therapeutics intended to mitigate cardiomyopathic damage.


Asunto(s)
Microambiente Celular , Miocardio/patología , Cicatrización de Heridas , Animales , Animales Recién Nacidos , Capilares/patología , Agregación Celular , Muerte Celular , Linaje de la Célula , Tamaño de la Célula , Citoprotección , Células Progenitoras Endoteliales/citología , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Humanos , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Células Madre Mesenquimatosas/citología , Ratones Endogámicos NOD , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/citología , Estrés Oxidativo , Comunicación Paracrina , Ratas Sprague-Dawley , Transcripción Genética
20.
Autophagy ; 15(7): 1182-1198, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30741592

RESUMEN

Cell-based therapies represent a very promising strategy to repair and regenerate the injured heart to prevent progression to heart failure. To date, these therapies have had limited success due to a lack of survival and retention of the infused cells. Therefore, it is important to increase our understanding of the biology of these cells and utilize this information to enhance their survival and function in the injured heart. Mitochondria are critical for progenitor cell function and survival. Here, we demonstrate the importance of mitochondrial autophagy, or mitophagy, in the differentiation process in adult cardiac progenitor cells (CPCs). We found that mitophagy was rapidly induced upon initiation of differentiation in CPCs. We also found that mitophagy was mediated by mitophagy receptors, rather than the PINK1-PRKN/PARKIN pathway. Mitophagy mediated by BNIP3L/NIX and FUNDC1 was not involved in regulating progenitor cell fate determination, mitochondrial biogenesis, or reprogramming. Instead, mitophagy facilitated the CPCs to undergo proper mitochondrial network reorganization during differentiation. Abrogating BNIP3L- and FUNDC1-mediated mitophagy during differentiation led to sustained mitochondrial fission and formation of donut-shaped impaired mitochondria. It also resulted in increased susceptibility to cell death and failure to survive the infarcted heart. Finally, aging is associated with accumulation of mitochondrial DNA (mtDNA) damage in cells and we found that acquiring mtDNA mutations selectively disrupted the differentiation-activated mitophagy program in CPCs. These findings demonstrate the importance of BNIP3L- and FUNDC1-mediated mitophagy as a critical regulator of mitochondrial network formation during differentiation, as well as the consequences of accumulating mtDNA mutations. Abbreviations: Baf: bafilomycin A1; BCL2L13: BCL2 like 13; BNIP3: BCL2 interacting protein 3; BNIP3L: BCL2 interacting protein 3 like; CPCs: cardiac progenitor cells; DM: differentiation media; DNM1L: dynamin 1 like; EPCs: endothelial progenitor cells; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FUNDC1: FUN14 domain containing 1; HSCs: hematopoietic stem cells; MAP1LC3B/LC3: microtubule-associated protein 1 light chain 3 beta; MFN1/2: mitofusin 1/2; MSCs: mesenchymal stem cells; mtDNA: mitochondrial DNA; OXPHOS: oxidative phosphorylation; PPARGC1A: PPARG coactivator 1 alpha; PHB2: prohibitin 2; POLG: DNA polymerase gamma, catalytic subunit; SQSTM1: sequestosome 1; TEM: transmission electron microscopy; TMRM: tetramethylrhodamine methyl ester.


Asunto(s)
Autofagosomas/metabolismo , Diferenciación Celular , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia , Mioblastos Cardíacos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Células Cultivadas , ADN Polimerasa gamma/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/ultraestructura , Dinámicas Mitocondriales/efectos de los fármacos , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Mitofagia/efectos de los fármacos , Mitofagia/genética , Mioblastos Cardíacos/efectos de los fármacos , Infarto del Miocardio , Biogénesis de Organelos , Prohibitinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA