Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(4): e2316477121, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38236737

RESUMEN

Ni is the second most abundant element in the Earth's core. Yet, its effects on the inner core's structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe's melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe's crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.

2.
Proc Natl Acad Sci U S A ; 119(47): e2204485119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36375053

RESUMEN

Magnetic materials are essential for energy generation and information devices, and they play an important role in advanced technologies and green energy economies. Currently, the most widely used magnets contain rare earth (RE) elements. An outstanding challenge of notable scientific interest is the discovery and synthesis of novel magnetic materials without RE elements that meet the performance and cost goals for advanced electromagnetic devices. Here, we report our discovery and synthesis of an RE-free magnetic compound, Fe3CoB2, through an efficient feedback framework by integrating machine learning (ML), an adaptive genetic algorithm, first-principles calculations, and experimental synthesis. Magnetic measurements show that Fe3CoB2 exhibits a high magnetic anisotropy (K1 = 1.2 MJ/m3) and saturation magnetic polarization (Js = 1.39 T), which is suitable for RE-free permanent-magnet applications. Our ML-guided approach presents a promising paradigm for efficient materials design and discovery and can also be applied to the search for other functional materials.


Asunto(s)
Imanes , Metales de Tierras Raras , Retroalimentación , Magnetismo , Fenómenos Magnéticos , Aprendizaje Automático
3.
Phys Chem Chem Phys ; 26(12): 9510-9516, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38450725

RESUMEN

Ovonic threshold switching (OTS) selectors can effectively improve the storage density and suppress the leakage current of advanced phase-change memory devices. As a prototypical OTS material, amorphous GeSe is widely investigated. But the attention paid to amorphous Se (i.e., the functional constituent in amorphous GeSe) has been very limited up to now. Here we have explored the structure, bonding and electronic characteristics of amorphous Se using ab initio molecular dynamics simulations. The results reveal that the Se atoms in amorphous Se tend to form 2-coordinated configurations, and they connect with each other to form long chains. The fraction of the vibrational density of state located in the high frequency range is relatively large, and the formation energy of the Se-Se bond is as large as 4.44 eV, hinting that the Se-Se bonds in chains possess high stability. In addition, the mid-gap state related to the OTS behavior is also found in amorphous Se despite the small proportion. Our findings enrich the knowledge of amorphous Se, which aids the applications of Se-based OTS selectors.

4.
Phys Chem Chem Phys ; 25(47): 32594-32601, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38009068

RESUMEN

Boron-carbon compounds have been shown to have feasible superconductivity. In our earlier paper [Zheng et al., Phys. Rev. B, 2023, 107, 014508], we identified a new conventional superconductor of LiB3C at 100 GPa. Here, we aim to extend the investigation of possible superconductivity in this structural framework by replacing Li atoms with 27 different cations from periods 3, 4, and 5 under pressures ranging from 0 to 100 GPa. Using the high-throughput screening method of zone-center electron-phonon interaction, we found that ternary compounds like CaB3C, SrB3C, TiB3C, and VB3C are promising candidates for superconductivity. The consecutive calculations using the full Brillouin zone confirm that they have a Tc of <31 K at moderate pressures. Our study demonstrates that fast screening of superconductivity by calculating zone-center electron-phonon coupling strength is an effective strategy for high-throughput identification of new superconductors.

5.
Inorg Chem ; 61(45): 18154-18161, 2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36322924

RESUMEN

We perform a high-throughput screening on phonon-mediated superconductivity in a ternary metal diboride structure with alkali, alkaline earth, and transition metals. We find 17 ground states and 78 low-energy metastable phases. From fast calculations of zone-center electron-phonon coupling, 43 compounds are revealed to show electron-phonon coupling strength higher than that of MgB2. An anticorrelation between the energetic stability and electron-phonon coupling strength is identified. We suggest two phases, i.e., Li3ZrB8 and Ca3YB8, to be synthesized, which show reasonable energetic stability and superconducting critical temperature.

6.
Inorg Chem ; 61(42): 16699-16706, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36217744

RESUMEN

We integrate a deep machine learning (ML) method with first-principles calculations to efficiently search for the energetically favorable ternary compounds. Using La-Si-P as a prototype system, we demonstrate that ML-guided first-principles calculations can efficiently explore crystal structures and their relative energetic stabilities, thus greatly accelerate the pace of material discovery. A number of new La-Si-P ternary compounds with formation energies less than 30 meV/atom above the known ternary convex hull are discovered. Among them, the formation energies of La5SiP3 and La2SiP phases are only 2 and 10 meV/atom, respectively, above the convex hull. These two compounds are dynamically stable with no imaginary phonon modes. Moreover, by replacing Si with heavier-group 14 elements in the eight lowest-energy La-Si-P structures from our ML-guided predictions, a number of low-energy La-X-P phases (X = Ge, Sn, Pb) are predicted.

7.
J Am Chem Soc ; 143(11): 4213-4223, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33719436

RESUMEN

The pursuit of two-dimensional (2D) borides, MBenes, has proven to be challenging, not the least because of the lack of a suitable precursor prone to the deintercalation. Here, we studied room-temperature topochemical deintercalation of lithium from the layered polymorphs of the LiNiB compound with a considerable amount of Li stored in between [NiB] layers (33 at. % Li). Deintercalation of Li leads to novel metastable borides (Li∼0.5NiB) with unique crystal structures. Partial removal of Li is accomplished by exposing the parent phases to air, water, or dilute HCl under ambient conditions. Scanning transmission electron microscopy and solid-state 7Li and 11B NMR spectroscopy, combined with X-ray pair distribution function (PDF) analysis and DFT calculations, were utilized to elucidate the novel structures of Li∼0.5NiB and the mechanism of Li-deintercalation. We have shown that the deintercalation of Li proceeds via a "zip-lock" mechanism, leading to the condensation of single [NiB] layers into double or triple layers bound via covalent bonds, resulting in structural fragments with Li[NiB]2 and Li[NiB]3 compositions. The crystal structure of Li∼0.5NiB is best described as an intergrowth of the ordered single [NiB], double [NiB]2, or triple [NiB]3 layers alternating with single Li layers; this explains its structural complexity. The formation of double or triple [NiB] layers induces a change in the magnetic behavior from temperature-independent paramagnets in the parent LiNiB compounds to the spin-glassiness in the deintercalated Li∼0.5NiB counterparts. LiNiB compounds showcase the potential to access a plethora of unique materials, including 2D MBenes (NiB).

8.
Small ; 17(39): e2102699, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34396696

RESUMEN

g-C3 N4 /CdS heterojunctions are potential photocatalysts for hydrogen production but their traditional type-II configuration generally leads to weak oxidative and reductive activity. How to construct the novel Z-scheme g-C3 N4 /CdS counterparts to address this issue remains a great challenge in this field. In this work, a new direct Z-scheme heterojunction of defective g-C3 N4 /CdS is designed by introducing cyano groups (NC-) as the active bridge sites. Experimental observations in combination with density functional theory (DFT) calculations reveal that the unique electron-withdrawing feature of cyano groups in the defective g-C3 N4 /CdS heterostructure can endow this photocatalyst with numerous advantageous properties including high light absorption ability, strong redox performance, satisfactory charge separation efficiency, and long lifetime of charge carriers. Consequently, the resultant photocatalytic system exhibits more active performance than CdS and g-C3 N4 under visible light and reaches an excellent hydrogen evolution rate of 1809.07 µmol h-1 g-1 , which is 6.09 times higher than pristine g-C3 N4 . Moreover, the defective g-C3 N4 /CdS photocatalyst maintains good stability after 40 h continuous test. This work provides new insights into design and construction of Z-scheme heterojunctions for regulating the visible-light-induced photocatalytic activity for H2 evolution.

9.
Phys Rev Lett ; 125(19): 195503, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33216596

RESUMEN

We report the laser-induced solid-state transformation between a periodic "approximant" and quasicrystal in the Al-Cr system during rapid quenching. Dynamic transmission electron microscopy allows us to capture in situ the dendritic growth of the metastable quasicrystals. The formation of dendrites during solid-state transformation is a rare phenomenon, which we attribute to the structural similarity between the two intermetallics. Through ab initio molecular dynamics simulations, we identify the dominant structural motif to be a 13-atom icosahedral cluster transcending the phases of matter.

10.
Phys Chem Chem Phys ; 22(17): 9759-9766, 2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32334427

RESUMEN

Phase-change materials such as Ge-Sb-Te compounds have attracted much attention due to their potential value in electrical data storage. In contrast to the amorphous and crystalline phases, supercooled liquids are far from being deeply understood despite their inevitable role in both amorphization and crystallization processes. To this end, we have studied the dynamics properties and structural characteristics of liquid and supercooled liquid Ge3Sb2Te6 during the fast cooling process. As the temperature decreases, chemical bonds become more homogeneous, but coordination numbers of Ge, Sb and Te atoms change very little. Meanwhile, the structural order of short-range configuration is obviously enhanced. Further studies suggest that Ge-centered, Sb-centered and Te-centered configurations change to the more ordered defective octahedrons mainly by adjusting the bond-angle relationship and bond length, rather than just by changing the coordination environment. It is the more ordered octahedrons that promote the formation of medium-range order. Our findings provide a deep insight into the origin of local structural order in supercooled liquid Ge3Sb2Te6, which is of great importance for the comprehensive understanding of amorphization and crystallization processes.

11.
Phys Chem Chem Phys ; 22(25): 13975-13980, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32609127

RESUMEN

Due to the high cost and insufficient resources of lithium, alternative sodium-ion batteries have been widely investigated for large-scale applications. NaFePO4 has the highest theoretical capacity of 154 mA h g-1 among the iron-based phosphates, which makes it an attractive cathode material for Na-ion batteries. Experimentally, LiFePO4 has been highly successful as a cathode material in Li-ion batteries because its olivine crystal structure provides a stable framework during battery cycling. In NaFePO4, maricite replaces olivine as the most stable phase. However, the maricite phase is experimentally found to be electrochemically inactive under normal battery operating voltages (0-4.5 V). We found that partial substitutions of Na with Li stabilize the olivine structure and may be a way to improve the performance of NaFePO4 cathodes. Using the previously developed structural LiFePO4 database, we examined the low-energy crystal structures in the system when we replace Li with Na. The known maricite and olivine NaFePO4 phases are reconfirmed and an unreported phase with energy between them is identified by our calculations. Besides, the Li-doped olivine type compound LixNa1-xFePO4 with mixed alkali ions retains better energetic stability compared with the other two types of structures of the same composition, as long as the proportion of Li exceeds 0.25. The thermodynamic stability of o-type LixNa1-xFePO4 can be further improved at finite temperatures. The primary limitation of the calculations is that we mainly focus on the zero-temperature condition; however, the relative stability of the structures may vary depending on the ambient temperature.

12.
Phys Rev Lett ; 123(10): 105701, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31573294

RESUMEN

Relaxation processes significantly influence the properties of glass materials. However, understanding their specific origins is difficult; even more challenging is to forecast them theoretically. In this study, using microseconds molecular dynamics simulations together with an accurate many-body interaction potential, we predict that an Al_{90}Sm_{10} metallic glass would have complex relaxation behaviors: In addition to the main (α) relaxation, the glass (i) shows a pronounced secondary (ß) relaxation at cryogenic temperatures and (ii) exhibits an anomalous relaxation process (α_{2}) accompanying α relaxation. Both of the predictions are verified by experiments. Computational simulations reveal the microscopic origins of relaxation processes: while the pronounced ß relaxation is attributed to the abundance of stringlike cooperative atomic rearrangements, the anomalous α_{2} process is found to correlate with the decoupling of the faster motions of Al with slower Sm atoms. The combination of simulations and experiments represents a first glimpse of what may become a predictive routine and integral step for glass physics.

13.
Angew Chem Int Ed Engl ; 58(44): 15855-15862, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31373096

RESUMEN

Two novel lithium nickel boride polymorphs, RT-LiNiB and HT-LiNiB, with layered crystal structures are reported. This family of compounds was theoretically predicted by using the adaptive genetic algorithm (AGA) and subsequently synthesized by a hydride route with LiH as the lithium source. Unique among the known ternary transition-metal borides, the LiNiB structures feature Li layers alternating with nearly planar [NiB] layers composed of Ni hexagonal rings with a B-B pair at the center. A comprehensive study using a combination of single crystal/synchrotron powder X-ray diffraction, solid-state 7 Li and 11 B NMR spectroscopy, scanning transmission electron microscopy, quantum-chemical calculations, and magnetism has shed light on the intrinsic features of these polymorphic compounds. The unique layered structures of LiNiB compounds make them ultimate precursors for exfoliation studies, thus paving a way toward two-dimensional transition-metal borides, MBenes.

14.
Phys Rev Lett ; 120(8): 085703, 2018 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-29543013

RESUMEN

The crystal nucleation from liquid in most cases is too rare to be accessed within the limited time scales of the conventional molecular dynamics (MD) simulation. Here, we developed a "persistent embryo" method to facilitate crystal nucleation in MD simulations by preventing small crystal embryos from melting using external spring forces. We applied this method to the pure Ni case for a moderate undercooling where no nucleation can be observed in the conventional MD simulation, and obtained nucleation rate in good agreement with the experimental data. Moreover, the method is applied to simulate an even more sluggish event: the nucleation of the B2 phase in a strong glass-forming Cu-Zr alloy. The nucleation rate was found to be 8 orders of magnitude smaller than Ni at the same undercooling, which well explains the good glass formability of the alloy. Thus, our work opens a new avenue to study solidification under realistic experimental conditions via atomistic computer simulation.


Asunto(s)
Cristalización , Modelos Químicos , Simulación de Dinámica Molecular
15.
Soft Matter ; 14(45): 9185-9193, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30398506

RESUMEN

We study the crystal nucleation of the Weeks-Chandler-Andersen (WCA) model, using the recently introduced persistent embryo method (PEM). The method provides detailed characterization of pre-critical, critical and post-critical nuclei, as well as nucleation rates that compare favorably with those obtained using other methods (umbrella sampling, forward flux sampling or seeding). We further map our results to a hard sphere model allowing comparison with other existing predictions. Implications for experiments are also discussed.


Asunto(s)
Cristalización , Modelos Moleculares
17.
Phys Chem Chem Phys ; 20(21): 14557-14563, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29766162

RESUMEN

Structural phase transitions of electrode materials are responsible for poor reversibility during charge/discharge cycling in Li-ion batteries. Using previously developed structural databases, we investigate a structural landscape for LixFeSiO4 systems at x = 1. Starting with low-energy Li2FeSiO4 crystal structures, we explore the crystal structures of the material in different states of charge. The as-prepared Li2FeSiO4 materials adopt low energy structures characterized by two-dimensional (2D) Fe-Si networks. After the removal of one Li per formula unit to form LiFeSiO4, the structures with three-dimensional (3D) diamond-like Fe-Si networks become more energetically favorable without a significant impact on the charge capacity, which agrees with previous experimental and theoretical work. However, we reveal that the structure with a 3D diamond-like Fe-Si network can further transform into a new structure at x = 1. And the Li atom is hard to reinsert into these new structures. Consequently the system is prevented from returning to the Li2FeSiO4 state. We believe that the formation of this new structure plays an important role in the loss of reversible capacity of Li2FeSiO4 electrode materials.

18.
J Chem Phys ; 149(17): 174501, 2018 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408998

RESUMEN

The temperature dependence of the solid-liquid interfacial free energy, γ, is investigated for Al and Ni at the undercooled temperature regime based on a recently developed persistent-embryo method. The atomistic description of the nucleus shape is obtained from molecular dynamics simulations. The computed γ shows a linear dependence on the temperature. The values of γ extrapolated to the melting temperature agree well with previous data obtained by the capillary fluctuation method. Using the temperature dependence of γ, we estimate the nucleation free energy barrier in a wide temperature range from the classical nucleation theory. The obtained data agree very well with the results from the brute-force molecular dynamics simulations.

19.
Inorg Chem ; 56(23): 14577-14583, 2017 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-29131940

RESUMEN

Fe-cluster-based crystal structures are predicted for chalcogenides Fe3X4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe3X4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe3Te4 can be a good candidate as a rare-earth-free permanent magnet and Fe3S4 can be a magnetic nodal-line topological material.

20.
Phys Rev Lett ; 117(3): 037207, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472137

RESUMEN

The temperature-pressure phase diagram of the ferromagnet LaCrGe_{3} is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFM_{Q}. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q=0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe_{3} is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA