Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 24(37): 11482-11489, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39158148

RESUMEN

A novel antiferroelectric material, PbSnO3 (PSO), was introduced into a resistive random access memory (RRAM) to reveal its resistive switching (RS) properties. It exhibits outstanding electrical performance with a large memory window (>104), narrow switching voltage distribution (±2 V), and low power consumption. Using high-resolution transmission electron microscopy, we observed the antiferroelectric properties and remanent polarization of the PSO thin films. The in-plane shear strains in the monoclinic PSO layer are attributed to oxygen octahedral tilts, resulting in misfit dislocations and grain boundaries at the PSO/SRO interface. Furthermore, the incoherent grain boundaries between the orthorhombic and monoclinic phases are assumed to be the primary paths of Ag+ filaments. Therefore, the RS behavior is primarily dominated by antiferroelectric polarization and defect mechanisms for the PSO structures. The RS behavior of antiferroelectric heterostructures controlled by switching spontaneous polarization and strain, defects, and surface chemistry reactions can facilitate the development of new antiferroelectric device systems.

2.
Nano Lett ; 22(19): 7944-7951, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36129470

RESUMEN

In this study, facile salt-assisted chemical vapor deposition (CVD) was used to synthesize ultrathin non-van der Waals chromium sulfide (Cr2S3) with a thickness of ∼1.9 nm. The structural transformation of as-grown Cr2S3 was studied using advanced in situ heating techniques combined with transmission electron microscopy (TEM). Two-dimensional (2D) and quasi-one-dimensional (1D) samples were fabricated to investigate the connection between specific planes and the dynamic behavior of the structural variation. The rearrangement of atoms during the phase transition was driven by the loss of sulfur atoms at elevated temperatures, resulting in increased free energy. A decrease in the ratio of the (001) plane led to an overall increase in surface energy, thus lowering the critical phase transition temperature. Our study provides detailed insight into the mechanism of structural transformation and the critical factors governing transition temperature, thus paving the way for future studies on intriguing Cr-S compounds.

3.
Small ; 18(7): e2106411, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34995002

RESUMEN

2D materials have great potential for not only device scaling but also various applications. To prompt the development of 2D electronics and optoelectronics, a better understanding of the limitation of materials is essential. Material failure caused by bias can lead to variations in device behavior and even electrical breakdown. In this study, the structural evolution of monolayer MoS2 with high bias is revealed via in situ transmission electron microscopy at the atomic scale. The biasing process is recorded and studied with the aid of aberration-corrected scanning transmission electron microscopy. The effects of electron beam irradiation and biasing are also discussed through the combination of experiments and theory. It is found that the Mo nanoclusters result from disintegration of MoS2 and sulfur depletion, which are induced by Joule heating. The thermal stress can also damage the MoS2 layer and form long cracks in both in situ and ex situ biasing cases. Investigation of the results obtained with different applied voltages helps to further verify the mechanism of evolution and provide a comprehensive study of the function of biasing.

4.
Small ; 18(51): e2205306, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36328712

RESUMEN

Recently, perovskite (PV) oxides with ABO3 structures have attracted considerable interest from scientists owing to their functionality. In this study, CaFeOx is introduced to reveal the resistive switching properties and mechanism of oxygen vacancy transition in PV and brownmillerite (BM) structures. BM-CaFeO2.5 is grown on an Nb-STO conductive substrate epitaxially. CaFeOx exhibits excellent endurance and reliability. In addition, the CaFeOx also demonstrates an electroforming-free characteristic and multilevel resistance properties. To construct the switching mechanism, high-resolution transmission electron microscopy is used to observe the topotactic phase change in CaFeOx . In addition, scanning TEM and electron energy loss spectroscopy show the structural evolution and valence state variation of CaFeOx after the switching behavior. This study not only reveals the switching mechanism of CaFeOx , but also provides a PV oxide option for the dielectric material in resistive random-access memory (RRAM) devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA