Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Biol Chem ; 299(3): 102990, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36758802

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019, constitutes an emerging human pathogen of zoonotic origin. A critical role in protecting the host against invading pathogens is carried out by interferon-stimulated genes (ISGs), the primary effectors of the type I interferon (IFN) response. All coronaviruses studied thus far have to first overcome the inhibitory effects of the IFN/ISG system before establishing efficient viral replication. However, whether SARS-CoV-2 evades IFN antiviral immunity by manipulating ISG activation remains to be elucidated. Here, we show that the SARS-CoV-2 main protease (Mpro) significantly suppresses the expression and transcription of downstream ISGs driven by IFN-stimulated response elements in a dose-dependent manner, and similar negative regulations were observed in two mammalian epithelial cell lines (simian Vero E6 and human A549). Our analysis shows that to inhibit the ISG production, Mpro cleaves histone deacetylases (HDACs) rather than directly targeting IFN signal transducers. Interestingly, Mpro also abolishes the activity of ISG effector mRNA-decapping enzyme 1a (DCP1A) by cleaving it at residue Q343. In addition, Mpro from different genera of coronaviruses has the protease activity to cleave both HDAC2 and DCP1A, even though the alphacoronaviruse Mpro exhibits weaker catalytic activity in cleaving HDAC2. In conclusion, our findings clearly demonstrate that SARS-CoV-2 Mpro constitutes a critical anti-immune effector that modulates the IFN/ISG system at multiple levels, thus providing a novel molecular explanation for viral immune evasion and allowing for new therapeutic approaches against coronavirus disease 2019 infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Humanos , SARS-CoV-2 , Histona Desacetilasas/genética , Interferón Tipo I/farmacología , Péptido Hidrolasas , Mamíferos , Endorribonucleasas , Transactivadores
2.
Biochem Biophys Res Commun ; 709: 149836, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38564937

RESUMEN

Mitochondria are essential cellular organelles; detecting mitochondrial damage is crucial in cellular biology and toxicology. Compared with existing chemical probe detection methods, genetically encoded fluorescent protein sensors can directly indicate cellular and molecular events without involving exogenous reagents. In this study, we introduced a molecular sensor system, MMD-Sensor, for monitoring mitochondrial membrane damage. The sensor consists of two molecular modules. Module I is a fusion structure of the mitochondrial localization sequence (MLS), AIF cleavage site sequence (CSS), nuclear localization sequence (NLS), N-terminus of mNeonGreen and mCherry. Module II is a fusion structure of the C-terminus of mNeonGreen, NLS sequence, and mtagBFP2. Under normal condition, Module I is constrained in the inner mitochondrial membrane anchored by MLS, while Module II is restricted to the nucleus by its NLS fusion component. If the mitochondrial membrane is damaged, CSS is cut from the inner membrane, causing Module I to shift into the nucleus guided by the NLS fusion component. After Module I enters the nucleus, the N- and C-terminus of mNeonGreen meet each other and rebuild its intact 3D structure through fragment complementation and thus generates green fluorescence in the nucleus. Dynamic migration of red fluorescence from mitochondria to the nucleus and generation of green fluorescence in the nucleus indicate mitochondrial membrane damage. Using the MMD-Sensor, mitochondrial membrane damage induced by various reagents, such as uncoupling agents, ATP synthase inhibitors, monovalent cationic carriers, and ROS, in HeLa and 293T cells are directly observed and evaluated.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Células HeLa
3.
J Sep Sci ; 47(8): e2300669, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38651549

RESUMEN

Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.


Asunto(s)
Exosomas , Nanopartículas , Plantas , Nanopartículas/química , Exosomas/química , Exosomas/metabolismo , Plantas/química , Plantas/metabolismo , Tamaño de la Partícula , Ultracentrifugación , Cromatografía en Gel
4.
BMC Bioinformatics ; 24(1): 450, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017410

RESUMEN

BACKGROUND: Acute myeloid leukaemia (AML) is characterised by the malignant accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding a wide range of temporal information from initial to mature clones, including genesis, phenotypic transformation, and cell fate decisions, which might contribute to relapse in AML patients. METHODS: Based on the landscape of AML surface antigens generated by mass cytometry (CyTOF), we combined manifold analysis and principal curve-based trajectory inference algorithm to align myelocytes on a single-linear evolution axis by considering their phenotype continuum that correlated with differentiation order. Backtracking the trajectory from mature clusters located automatically at the terminal, we recurred the molecular dynamics during AML progression and confirmed the evolution stage of single cells. We also designed a 'dispersive antigens in neighbouring clusters exhibition (DANCE)' feature selection method to simplify and unify trajectories, which enabled the exploration and comparison of relapse-related traits among 43 paediatric AML bone marrow specimens. RESULTS: The feasibility of the proposed trajectory analysis method was verified with public datasets. After aligning single cells on the pseudotime axis, primitive clones were recognized precisely from AML blasts, and the expression of the inner molecules before and after drug stimulation was accurately plotted on the trajectory. Applying DANCE to 43 clinical samples with different responses for chemotherapy, we selected 12 antigens as a general panel for myeloblast differentiation performance, and obtain trajectories to those patients. For the trajectories with unified molecular dynamics, CD11c overexpression in the primitive stage indicated a good chemotherapy outcome. Moreover, a later initial peak of stemness heterogeneity tended to be associated with a higher risk of relapse compared with complete remission. CONCLUSIONS: In this study, pseudotime was generated as a new single-cell feature. Minute differences in temporal traits among samples could be exhibited on a trajectory, thus providing a new strategy for predicting AML relapse and monitoring drug responses over time scale.


Asunto(s)
Antígenos de Superficie , Leucemia Mieloide Aguda , Niño , Humanos , Recurrencia Local de Neoplasia , Leucemia Mieloide Aguda/genética , Fenotipo , Recurrencia
5.
Anal Chem ; 95(5): 2838-2847, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36701391

RESUMEN

Glutathione (GSH), the constituent of the redox buffer system, is a scavenger of reactive oxygen species (ROS), and its ratio to oxidized glutathione (GSSG) is a key indicator of oxidative stress in the cell. Acute myeloid leukemia (AML) is a highly aggressive hematopoietic malignancy characterized by aberrant levels of reduced and oxidized GSH due to oxidative stress. Therefore, the real-time, dynamic, and highly sensitive detection of GSH/GSSG in AML cells is of great interest for the clinical diagnosis and treatment of leukemia. The application of genetically encoded sensors to monitor GSH/GSSG levels in AML cells is not explored, and the underlying mechanism of how the drugs affect GSH/GSSG dynamics remains unclear. In this study, we developed subcellular compartment-specific sensors to monitor GSH/GSSG combined with high-resolution fluorescence microscopy that provides insights into basal GSH/GSSG levels in the cytosol, mitochondria, nucleus, and endoplasmic reticulum of AML cells, in a decreasing order, revealing substantial heterogeneity of GSH/GSSG level dynamics in different subcellular compartments. Further, we investigated the response of GSH/GSSG ratio in AML cells caused by Prussian blue and Fe3O4 nanoparticles, separately and in combination with cytarabine, pointing to steep gradients. Moreover, cytarabine and doxorubicin downregulated the GSH/GSSG levels in different subcellular compartments. Similarly, live-cell imaging showed a compartment-specific decrease in response to various drugs, such as CB-839, parthenolide (PTL), and piperlongumine (PLM). The enzymatic activity assay revealed the mechanism underlying fluctuations in GSH/GSSG levels in different subcellular compartments mediated by these drugs in the GSH metabolic pathway, suggesting some potential therapeutic targets in AML cells.


Asunto(s)
Técnicas Biosensibles , Leucemia Mieloide Aguda , Humanos , Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Leucemia Mieloide Aguda/tratamiento farmacológico
6.
J Virol ; 96(7): e0184621, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35285687

RESUMEN

Real-time imaging of viruses in living cells considerably facilitates the study of virus-host interactions. However, generating a fluorescently labeled recombinant virus is challenging, especially for Zika virus (ZIKV), which causes microcephaly in neonates. The monocistronic nature of the ZIKV genome represents a major challenge for generating a replication-competent genetically engineered ZIKV suitable for real-time imaging. Here, we generated a fluorescent ZIKV by introducing the biarsenical tetracysteine (TC) tag system. After separately inserting the TC tag at six sites in the capsid protein, we found that only when we inserted the TC tag at the site of amino acids 27/28 (AA27/28, or TC27) could the genetically engineered ZIKV be rescued. Importantly, the TC27 ZIKV is characterized as replication and infection competent. After labeling the TC tag with the fluorescent biarsenical reagents, we visualized the dynamic nuclear import behavior of the capsid protein. In addition, using the single-particle tracking technology, we acquired real-time imaging evidence that ZIKV moved along the cellular filopodia and entered into the cytoplasm via endocytosis. Thus, we provide a feasible strategy to generate a replication-competent TC-tagged ZIKV for real-time imaging, which should greatly facilitate the study of ZIKV-host interactions in living cells. IMPORTANCE Zika virus (ZIKV) is the mosquito-borne enveloped flavivirus that causes microcephaly in neonates. While real-time imaging plays a critical role in dissecting viral biology, no fluorescent, genetically engineered ZIKV for single-particle tracking is currently available. Here, we generated a replication-competent genetically engineered ZIKV by introducing the tetracysteine (TC) tag into its capsid protein. After labeling the TC tag with the fluorescent biarsenical reagents, we visualized the nuclear import behavior of the capsid protein and the endocytosis process of single ZIKV particle. Taken together, these results demonstrate a fluorescent labeling strategy to track the ZIKV-host interactions at both the protein level and the viral particle level. Our replication-competent TC27 ZIKV should open an avenue to study the ZIKV-host interactions and may provide applications for antiviral screening.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Rastreo Celular , Humanos , Replicación Viral , Virus Zika/genética , Virus Zika/metabolismo , Infección por el Virus Zika/virología
7.
Anal Chem ; 94(24): 8724-8731, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35666940

RESUMEN

The CRISPR/dCas9 system has become an essential tool for live-cell imaging of genomic loci, but it has limited applications in imaging low-/non-repetitive genomic loci due to the strong nuclear background noise emerging from many untargeted fluorescent modules. Here, we propose an optogenetically controlled background fluorescence reduction strategy that combines the CRISPR-SunTag system with a light-inducible nuclear export tag (LEXY). Utilizing the SunTag system, multiple copies of LEXY-tagged sfGFP were recruited to the C-terminal dCas9, recognizing the target genomic loci. As the nuclear export sequence at the C-terminal LEXY could be exposed to pulsed blue light irradiation, the untargeted nuclear labeling modules were light controllably transferred to the cytoplasm. Consequently, genomic loci containing as few as nine copies of repeats were clearly visualized, and a significant increase in the signal-to-noise ratio was achieved. This simple and controllable method is expected to have a wide range of applications in cell biology.


Asunto(s)
Sistemas CRISPR-Cas , Optogenética , Sistemas CRISPR-Cas/genética , Núcleo Celular , Genoma , Microscopía Fluorescente
8.
Anal Chem ; 94(26): 9355-9362, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35729689

RESUMEN

Homogeneous and high-density immobilization of proteins on gold-based sensing surface without the loss of protein activity is of great significance for high-performance immunosensing but remains challenging. To realize more sensitive immunosensing, an improved method for protein immobilization on the gold surface is urgently required. Here, we propose a biological and mild approach by combining a genetically encoded SpyTag-SpyCatcher interaction system with a redesigned S-layer of bacteria. This method allows proteins of interest to be covalently linked with the S-layer in a biological manner and arranged orderly in a two-dimensional nanoarray on the gold surface. The activity of African swine fever virus proteins was significantly preserved after immobilization. In addition, our S-layer-based immobilization method exhibited an eightfold increase in detection sensitivity compared with the conventional chemical cross-linking for protein immobilization during serological tests. Together, our S-layer-based immobilization method provides an innovative approach for building a quality gold-based biosensing interface and should greatly contribute to the high-sensitivity sensing for a deeper understanding of pathogen infection and host immunity.


Asunto(s)
Virus de la Fiebre Porcina Africana , Técnicas Biosensibles , Animales , Técnicas Biosensibles/métodos , Oro , Porcinos
9.
Acc Chem Res ; 54(24): 4451-4461, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34846836

RESUMEN

Bacillus anthracis, present in two forms of vegetative cells and spores, is a pathogen that infects humans through contact with infected animals or contaminated animal products and is also maliciously used in terrorist acts. Therefore, a rapid and sensitive test for B. anthracis is necessary but challenging. The challenge comes from the following aspects: an accurate distinction of B. anthracis from other Bacillus species due to their high genomic similarity and the horizontal gene transfer between Bacillus members; direct detection of the B. anthracis spores without damaging them for component extraction to avoid the risk of spore atomization; and the rapid detections of B. anthracis in complex samples, such as soil and suspicious powders, without sample pretreatments and expensive large-scale equipment. Although culturing B. anthracis from samples is the conventional method for the detection of B. anthracis, it is time-consuming and the detection results would not be easy to interpret because many Bacillus species share similar phenotypic features such as a lack of motility and hemolysis, resistance to gamma phages, and so on. Intensive and extensive effort has been expended to develop reliable detection technologies, among which biosensors exhibit comprehensive advantages in terms of sensitivity, specificity, and portability. Here, we briefly review the research progress, providing highlights of the latest achievements and our own practice and experience. The contents can be summarized in three aspects: the discovery of detection targets, including genes, toxins, and other components; the creation of molecular recognition elements, such as monoclonal antibodies, single-chain antibody fragments, specific peptides, and aptamers; and the design and construction of biosensing systems by the integration of appropriate molecular recognition elements and transducer devices. These sensor devices have their own characteristics and different principles. For example, the surface plasmon resonance biosensor and quartz crystal microbalance biosensor are very sensitive, while the multiplex PCR-on-a-chip can detect multitargets. Biosensors for direct spore detection are highly recommended because they are not only fast but also avoid contamination from aerosol-containing spores. The introduction of nanotechnology has significantly improved the performance of biosensors. Superparamagnetic nanoparticles and phage-displayed gold nanoparticle ligand peptides have made the results of spore detection visible to the naked eye. Because of space constraints, many advanced biosensors for B. anthracis are not described in detail but are cited as references. Although biosensors provide a variety of options for various application scenarios, the challenges have not been fully addressed, which leaves room for the development of more advanced and practical B. anthracis detection means.


Asunto(s)
Bacillus anthracis , Técnicas Biosensibles , Nanopartículas del Metal , Animales , Oro , Humanos , Tecnicas de Microbalanza del Cristal de Cuarzo
10.
Anal Chem ; 92(15): 10569-10577, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32600030

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease, and there are critical interests in detecting multiple biomarkers as a single biomarker detection cannot reflect the exact phase of the disease. Exosomes derived from different types of AML cells contain respective combinations of cluster of differentiation (CD) markers that may be used to guide the molecular typing of AML in the clinic. Here, aiming to build more precise molecular typing of AML, we demonstrate multiplex immuno-PCR (mI-PCR) assay for simultaneous detection of multiple surface CDs on exosomes of AML via capillary electrophoresis with laser-induced fluorescence (CE-LIF). This method comprises of four steps: (1) chemical attachment of reporter DNA sequence to the specific detection antibodies, (2) binding of the detection antibodies to their targets on the exosomes, (3) DNA amplification of the reporter DNA, and (4) capillary electrophoresis analysis of the PCR products. With the method, we first realized simultaneous detection of five target CD molecules (CD9, CD34, c-Kit/CD117, CD123, and FLT-3/CD135) on leukemia cell-derived exosomes with high detection sensitivity. The limit of detection (LOD) and limit of quantification (LOQ) are 2.41 ± 0.04 particles/µL and 8.02 ± 0.16 particles/µL, respectively, for leukemia cell-derived exosomes. This mI-PCR is found sensitive enough to detect picogram (10-12) levels of protein concentrations with high recovery (95%) in spiked serum sample experiments. We thus anticipate that the proposed method is promising in sensitive detection of multitargets to assist in the precise molecular typing of many complex diseases.


Asunto(s)
Diferenciación Celular/fisiología , Leucemia , Reacción en Cadena de la Polimerasa Multiplex/métodos , Biomarcadores/metabolismo , Línea Celular Tumoral , Electroforesis Capilar/métodos , Fluorescencia , Humanos , Rayos Láser
11.
Anal Chem ; 92(15): 10196-10209, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32573207

RESUMEN

Molecular diagnosis of COVID-19 primarily relies on the detection of RNA of the SARS-CoV-2 virus, the causative infectious agent of the pandemic. Reverse transcription polymerase chain reaction (RT-PCR) enables sensitive detection of specific sequences of genes that encode the RNA dependent RNA polymerase (RdRP), nucleocapsid (N), envelope (E), and spike (S) proteins of the virus. Although RT-PCR tests have been widely used and many alternative assays have been developed, the current testing capacity and availability cannot meet the unprecedented global demands for rapid, reliable, and widely accessible molecular diagnosis. Challenges remain throughout the entire analytical process, from the collection and treatment of specimens to the amplification and detection of viral RNA and the validation of clinical sensitivity and specificity. We highlight the main issues surrounding molecular diagnosis of COVID-19, including false negatives from the detection of viral RNA, temporal variations of viral loads, selection and treatment of specimens, and limiting factors in detecting viral proteins. We discuss critical research needs, such as improvements in RT-PCR, development of alternative nucleic acid amplification techniques, incorporating CRISPR technology for point-of-care (POC) applications, validation of POC tests, and sequencing of viral RNA and its mutations. Improved assays are also needed for environmental surveillance or wastewater-based epidemiology, which gauges infection on the community level through analyses of viral components in the community's wastewater. Public health surveillance benefits from large-scale analyses of antibodies in serum, although the current serological tests do not quantify neutralizing antibodies. Further advances in analytical technology and research through multidisciplinary collaboration will contribute to the development of mitigation strategies, therapeutics, and vaccines. Lessons learned from molecular diagnosis of COVID-19 are valuable for better preparedness in response to other infectious diseases.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , ARN Viral/análisis , Betacoronavirus/química , COVID-19 , Prueba de COVID-19 , Sistemas CRISPR-Cas , Técnicas de Laboratorio Clínico , Reacciones Falso Negativas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Pandemias , Pruebas en el Punto de Atención , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2 , Manejo de Especímenes/métodos , Carga Viral , Proteínas Virales/análisis , Aguas Residuales/análisis
12.
Cell Microbiol ; 21(12): e13090, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31364251

RESUMEN

Mycobacterium tuberculosis (Mtb) manipulates multiple host defence pathways to survive and persist in host cells. Understanding Mtb-host cell interaction is crucial to develop an efficient means to control the disease. Here, we applied the Mtb proteome chip, through separately interacting with H37Ra and H37Rv stimulated macrophage lysates, screened 283 Mtb differential proteins. Through primary screening, we focused on fatty acylCoA synthetase FadD13. Mtb FadD13 is a potential drug target, but its role in infection remains unclear. Deletion of FadD13 in Mtb reduced the production of proinflammatory cytokines IL-1ß, IL-18, and IL-6. Bimolecular fluorescence complementation and colocalization showed that the binding partner of FadD13 in macrophage was eEF1A1 (a translation elongation factor). Knockdown eEF1A1 expression in macrophage abrogated the promotion of proinflammatory cytokines induced by FadD13. In addition, ΔfadD13 mutant decreased the expression of the NF-κB signalling pathway related proteins p50 and p65, so did the eEF1A1 knockdown macrophage infected with H37Rv. Meanwhile, we found that deletion of FadD13 reduced Mtb survival in macrophages during Mtb infection, and purified FadD13 proteins induced broken of macrophage membrane. Taken together, FadD13 is crucial for Mtb proliferation in macrophages, and it plays a key role in the production of proinflammatory cytokines during Mtb infection.


Asunto(s)
Coenzima A Ligasas/metabolismo , Citocinas/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Transducción de Señal/fisiología , Línea Celular , Células HEK293 , Interacciones Huésped-Patógeno/fisiología , Humanos , Inflamación/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo
13.
Acta Biochim Biophys Sin (Shanghai) ; 49(9): 835-844, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28910983

RESUMEN

Macrophages are primary host of Mycobacterium tuberculosis (M.tb) and the central effector of in vivo innate immune responses against bacteria. Though the interaction between macrophages and mycobacteria has been widely investigated, the molecular mechanisms of M.tb pathogenesis in macrophages are still not clear. In this work, we investigated the altered protein expression profiles of macrophages after virulent H37Rv strain and avirulent H37Ra strain infection by tandem mass tag-based quantitative proteomics. Among 6762 identified proteins of macrophages, the expression levels of 235 proteins were significantly altered, which is supposed to be related to the infection of different strains. By bioinformatics analysis at systems level, we found that these proteins are mainly involved in the biological process of apoptosis, blood coagulation, oxidative phosphorylation, and others. The enormous variation in protein profiles between macrophages infected with H37Ra and H37Rv suggests the existence of four different immunity mechanisms that decide the fates of macrophages and M.tb. These data may provide a better understanding of M.tb pathogenesis within the host, which contributes to the prevention and clinical treatment of tuberculosis.


Asunto(s)
Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/fisiología , Proteoma/análisis , Proteómica/métodos , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno , Humanos , Mycobacterium tuberculosis/patogenicidad , Mapas de Interacción de Proteínas/genética , Proteoma/genética , Espectrometría de Masas en Tándem , Virulencia
14.
Small ; 11(43): 5826-32, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26422821

RESUMEN

S-layer proteins create a cell-surface layer architecture in both bacteria and archaea. Because S-layer proteins self-assemble into a native-like S-layer crystalline structure in vitro, they are attractive building blocks in nanotechnology. Here, the potential use of the S-layer protein EA1 from Bacillus anthracis in constructing a functional nanostructure is investigated, and apply this nanostructure in a proof-of-principle study for serological diagnosis of anthrax. EA1 is genetically fused with methyl parathion hydrolase (MPH), to degrade methyl parathion and provide a label for signal amplification. EA1 not only serves as a nanocarrier, but also as a specific antigen to capture anthrax-specific antibodies. As results, purified EA1-MPH forms a single layer of crystalline nanostructure through self-assembly. Our chimeric nanocatalyst greatly improves enzymatic stability of MPH. When applied to the detection of anthrax-specific antibodies in serum samples, the detection of our EA1-MPH nanostructure is nearly 300 times more sensitive than that of the unassembled complex. Together, it is shown that it is possible to build a functional and highly sensitive nanosensor based on S-layer protein. In conclusion, our present study should serve as a model for the development of other multifunctional nanomaterials using S-layer proteins.


Asunto(s)
Carbunco/sangre , Autoanticuerpos/sangre , Bacillus anthracis/química , Inmunoensayo/instrumentación , Glicoproteínas de Membrana/química , Análisis por Matrices de Proteínas/instrumentación , Adsorción , Carbunco/inmunología , Autoanticuerpos/inmunología , Sitios de Unión , Cristalización/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Ensayo de Materiales , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/ultraestructura , Monoéster Fosfórico Hidrolasas/química , Unión Proteica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
J Proteome Res ; 13(5): 2511-23, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24712722

RESUMEN

Protein phosphorylation on serine, threonine, and tyrosine (Ser/Thr/Tyr) is well established as a key regulatory posttranslational modification used in signal transduction to control cell growth, proliferation, and stress responses. However, little is known about its extent and function in diatoms. Phaeodactylum tricornutum is a unicellular marine diatom that has been used as a model organism for research on diatom molecular biology. Although more than 1000 protein kinases and phosphatases with specificity for Ser/Thr/Tyr residues have been predicted in P. tricornutum, no phosphorylation event has so far been revealed by classical biochemical approaches. Here, we performed a global phosphoproteomic analysis combining protein/peptide fractionation, TiO(2) enrichment, and LC-MS/MS analyses. In total, we identified 264 unique phosphopeptides, including 434 in vivo phosphorylated sites on 245 phosphoproteins. The phosphorylated proteins were implicated in the regulation of diverse biological processes, including signaling, metabolic pathways, and stress responses. Six identified phosphoproteins were further validated by Western blotting using phospho-specific antibodies. The functions of these proteins are discussed in the context of signal transduction networks in P. tricornutum. Our results advance the current understanding of diatom biology and will be useful for elucidating the phosphor-relay signaling networks in this model diatom.


Asunto(s)
Proteínas Bacterianas/metabolismo , Diatomeas/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Sitios de Unión , Western Blotting , Cromatografía Liquida , Redes y Vías Metabólicas , Modelos Biológicos , Fosfopéptidos/metabolismo , Fosforilación , Transducción de Señal , Estrés Fisiológico , Espectrometría de Masas en Tándem
16.
J Clin Microbiol ; 52(6): 1947-53, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24671780

RESUMEN

New Delhi metallo-ß-lactamase (NDM)-producing bacteria are considered potential global health threats. It is necessary to monitor NDM-1 and its variants in clinical isolates in order to understand the NDM-1 epidemic and the impact of its variants on ß-lactam resistance. To reduce the lengthy time needed for cloning and expression of NDM-1 variants, a novel PCR-based in vitro protein expression (PCR-P) method was used to detect blaNDM-1 and its variants coding for carbapenemases with different activities (functional variants). The PCR-P method combined a long-fragment real-time quantitative PCR (LF-qPCR) with in vitro cell-free expression to convert the blaNDM-1 amplicons into NDM for carbapenemase assay. The method could screen for blaNDM-1 within 3 h with a detection limit of 5 copies and identify functional variants within 1 day. Using the PCR-P to analyze 5 recent blaNDM-1 variants, 2 functional variants, blaNDM-4 and blaNDM-5, were revealed. In the initial testing of 23 clinical isolates, the PCR-P assay correctly found 8 isolates containing blaNDM-1. This novel method provides the first integrated approach for rapidly detecting the full-length blaNDM-1 and revealing its functional variants in clinical isolates.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Bacterias Gramnegativas/enzimología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , beta-Lactamasas/biosíntesis , Bacterias Gramnegativas/aislamiento & purificación , Humanos , Sensibilidad y Especificidad , Factores de Tiempo , beta-Lactamasas/genética
17.
Acta Biochim Biophys Sin (Shanghai) ; 46(9): 802-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25062707

RESUMEN

For living deep-tissue imaging, the optical window favorable for light penetration is in near-infrared wavelengths, which requires fluorescent proteins with emission spectra in the near-infrared region. Here, we report that a single mutant Ser28His of mNeptune with a near-infrared (≥650 nm) emission maxima of 652 nm is found to improve the brightness, photostability, and pH stability when compared with its parental protein mNeptune, while it remains as a monomer, demonstrating that there is still plenty of room to improve the performance of the existing near infrared fluorescence proteins by directed evolution.


Asunto(s)
Concentración de Iones de Hidrógeno , Proteínas Luminiscentes/química , Mutación , Teoría Cuántica , Espectroscopía Infrarroja Corta/métodos , Secuencia de Bases , Cromatografía en Gel , Cartilla de ADN , Datos de Secuencia Molecular
18.
Biosens Bioelectron ; 257: 116171, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636317

RESUMEN

The COVID-19 pandemic has highlighted the need for rapid and sensitive detection of SARS-CoV-2. Here, we report an ultrasensitive SARS-CoV-2 immunosensor by integration of an AlGaN/GaN high-electron-mobility transistor (HEMT) and anti-SARS-CoV-2 spike protein antibody. The AlGaN/GaN HEMT immunosensor has demonstrated the capability to detect SARS-CoV-2 spike proteins at an impressively low concentration of 10-22 M. The sensor was also applied to pseudoviruses and SARS-CoV-2 ΔN virions that display the Spike proteins with a single virion particle sensitivity. These features validate the potential of AlGaN/GaN HEMT biosensors for point of care tests targeting SARS-CoV-2. This research not only provides the first HEMT biosensing platform for ultrasensitive and label-free detection of SARS-CoV-2.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Galio , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Transistores Electrónicos , Virión , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/análisis , Humanos , COVID-19/diagnóstico , COVID-19/virología , Galio/química , Virión/aislamiento & purificación , Virión/química , Límite de Detección , Compuestos de Aluminio/química , Diseño de Equipo , Inmunoensayo/instrumentación , Inmunoensayo/métodos , Anticuerpos Inmovilizados/química , Anticuerpos Antivirales
19.
Cell Regen ; 13(1): 16, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101982

RESUMEN

Organs-on-chips are microphysiological systems that allow to replicate the key functions of human organs and accelerate the innovation in life sciences including disease modeling, drug development, and precision medicine. However, due to the lack of standards in their definition, structural design, cell source, model construction, and functional validation, a wide range of translational application of organs-on-chips remains a challenging. "Organs-on-chips: Intestine" is the first group standard on human intestine-on-a-chip in China, jointly agreed and released by the experts from the Chinese Society of Biotechnology on 29th April 2024. This standard specifies the scope, terminology, definitions, technical requirements, detection methods, and quality control in building the human intestinal model on a chip. The publication of this group standard will guide the institutional establishment, acceptance and execution of proper practical protocols and accelerate the international standardization of intestine-on-a-chip for translational applications.

20.
Nanoscale ; 15(7): 3475-3481, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723040

RESUMEN

The detection of the antibody of Epstein-Barr virus (EBV) is critical for the diagnosis of nasopharyngeal carcinoma (NPC). An accurate and scalable point-of-care detection method would support the screening, diagnosis, and monitoring of NPC patients. In this study, firstly, we made an antibody enrichment element, antigen-MNPs, which can screen out specific antibodies in a complex sample. Secondly, signal-amplifying elements were synthesized by labelling inorganic quantum dots (QDs) and anti-antibodies on the surface of flop-ferritin. A sandwich structure is formed among antigen-MNPs, target-antibodies, and anti-antibodies-flop-ferritin@QDs. The antibodies are quantified by fluorescence intensity with a limit of detection (LOD) as low as 10-11 g mL-1. Moreover, the method can detect different types of antibodies and was employed to examine 10 sera from NPC patients and 10 sera from healthy individuals. The result indicates that the simultaneous detection of anti-EBNA-IgG and anti-EBNA-IgA provides an efficient route for early diagnosis of NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Nanopartículas , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/diagnóstico , Neoplasias Nasofaríngeas/diagnóstico , Anticuerpos Antivirales , Inmunoensayo , Anticuerpos Antiidiotipos , Inmunoglobulina A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA