Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2303466120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695920

RESUMEN

Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.

2.
Nano Lett ; 24(3): 897-904, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38193898

RESUMEN

Current artificial nanochannels rely more on charge interactions for intelligent mass transport. Nevertheless, popular charged nanochannels would lose their advantages in long-term applications. Confined water, an indispensable transport medium in biological nanochannels, dominating the transport process in the uncharged nanochannels perfectly provides a new perspective. Herein, we achieve confined-water-dominated mass transport in hydrogel nanochannels (HNCs) constructed by in situ photopolymerization of acrylic acid (PAA) hydrogel in anodic alumina (AAO) nanochannels. HNCs show selectivity to Na+ transport and a high transport rate of molecules after introducing Na+/Li+, compared with other alkali metal ions like Cs+/K+. The mechanism given by ATR-FTIR shows that the hydrogen-bonding structure of confined water in HNCs is destabilized by Na+/Li+, which facilitates mass transport, but is constrained by Cs+/K+, resulting in transport inhibition. This work elucidates the relationship between confined water and mass transport in uncharged nanochannels while also presenting a strategy for designing functional nanochannel devices.

3.
J Am Chem Soc ; 145(44): 24145-24152, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37874995

RESUMEN

Oil adhesion on ionic surfaces is ubiquitous in organisms and natural environments and is generally determined by surface chemical component and texture. However, when adhesion occurs, water molecules at the solid-liquid interface, acting as a bridge not only influenced by the structure and composition of the solid surface but also interacting with the neighboring oil molecules, play a crucial role but are always overlooked. Herein, we investigate the oil adhesion process on a carboxyl-terminated self-assembled monolayer surface (COOH-SAM) in ionic solutions and observe the interfacial water structure via surface-enhanced Raman scattering (SERS) in this system. It is found that the lower the tetracoordinated water content, the stronger the oil adhesion. Compared to monovalent ions, the strengthened binding of multivalent ions to the COOH-SAM surface makes the interfacial water more disordered, which eventually leads to a stronger oil adhesion. Notably, the amount of oil adhesion decreases with an increase in the thickness of the interfacial water region. The interfacial water-dictated oil adhesion has been demonstrated in capillary to simulate the water-driven oil recovery, providing a molecular-level explanation for enhanced oil recovery from low salinity water flooding and also indicating potential applications in intelligent microfluidic and seawater desalination.

4.
J Am Chem Soc ; 145(22): 12275-12283, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37227398

RESUMEN

Long-range ordered membranes comprised of porous nanoparticles have been pursued in precise separations for a long time. Yet most of the fabrication methods suffer from limited substrates or lack of precise control over crystal orientation. Herein, large-scale metal-organic framework (MOF) monolayer membranes with controlled orientations are prepared through an interfacial self-assembly process confined by superlyophilic substrates. The superspreading of reactant microdroplets results in an ultrathin liquid layer under an immiscible oil as a confined reactor. The concomitant MOF (ZIF-8) particles spontaneously assemble into monolayers with controlled orientations, determined by the particles' contact angles at the liquid/liquid interface, which can be regulated by solvent compositions. Therein both gas-adsorption and ion-transport tests prove that the ⟨111⟩-oriented membrane exhibits a minimized mass-transfer resistance. The as-prepared membrane can selectively transport rare-earth elements (REEs), and a La3+/K+ selectivity of 14.3 is achieved. Molecular dynamics simulations reveal that the REEs-selectivity is associated with the distinct difference in ion-membrane binding energies, demonstrating the potential of ZIF-8 membranes for use in high-efficiency recovery of REEs from industrial wastes.

5.
J Nanobiotechnology ; 20(1): 390, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36045424

RESUMEN

Abundant glutathione (GSH) is a biological characteristic of lots of tumor cells. A growing number of studies are utilizing GSH depletion as an effective adjuvant therapy for tumor. However, due to the compensatory effect of intracellular GSH biosynthesis, GSH is hard to be completely exhausted and the strategy of GSH depletion remains challenging. Herein, we report an L-buthionine-sulfoximine (BSO)-based hypertoxic self-assembled peptide derivative (NSBSO) with dual functions of GSH depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. The NSBSO consists of a hydrophobic self-assembled peptide motif and a hydrophilic peptide derivative containing BSO that inhibits the synthesis of GSH. NSBSO was cleaved by GSH and thus experienced a morphological transformation from nanoparticles to nanofibers. NSBSO showed GSH-dependent cytotoxicity and depletion of intracellular GSH. In 4T1 cells with medium GSH level, it depleted intracellular GSH and inactivated GSH peroxidase 4 (GPX4) and thus induced efficient ferroptosis. While in B16 cells with high GSH level, it exhausted GSH and triggered indirect increase of intracellular ROS and activation of Caspase 3 and gasdermin E, resulting in severe pyroptosis. These findings demonstrate that GSH depletion- and biosynthesis inhibition-induced ferroptosis and pyroptosis strategy would provide insights in designing GSH-exhausted medicines.


Asunto(s)
Ferroptosis , Butionina Sulfoximina/farmacología , Glutatión , Piroptosis
6.
Small ; 17(31): e2100788, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34176214

RESUMEN

Water molecules confined to low-dimensional spaces exhibit unusual properties compared to bulk water. For example, the alternating hydrophilic and hydrophobic nanodomains on flat silicon wafer can induce the abnormal spreading of water (contact angles near 0°) which is caused by the 2D capillary effect. Hence, exploring the physicochemical properties of confined water from the nanoscale is of great value for understanding the challenges in material science and promoting the applications of nanomaterials in the fields of mass transport, nanofluidic designing, and fuel cell. The knowledge framework of confined water can also help to better understand the complex functions of the hydration layer of biomolecules, and even trace the origin of life. In this review, the physical properties, abnormal behaviors, and functions of the confined water are mainly summarized through several common low-dimensional water formats in the fields of solid/air-water interface, nanochannel confinement, and biological hydration layer. These researches indicate that the unusual behaviors of the confined water depend strongly on the confinement size and the interaction between the molecules and confining surface. These diverse properties of confined water open a new door to materials science and may play an important role in the future development of biology.


Asunto(s)
Nanoestructuras , Agua , Interacciones Hidrofóbicas e Hidrofílicas
7.
J Am Chem Soc ; 141(22): 8658-8669, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31063693

RESUMEN

Nanopores and nanochannels are ubiquitous, from biological systems to various artificial materials. Taking advantage of size confinement and tailoring the interior components, numerous functions can be achieved such as selectivity, gating, rectification, and so on, which result from diverse interactions between ion/molecule and nanopore/nanochannel. In this Perspective, on account of the summarized critical principles, namely size/shape, wettability, charge, recognition, and other interactions during ion/molecule transportation in nanopores and nanochannels, we introduce four main sections of applications: selective transportation in separation, controllable gating systems, energy conversion devices, and sensors. In addition, some typical challenges and possible future research endeavors in the related fields will also be discussed.

8.
Small ; 14(18): e1703369, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29399965

RESUMEN

The homing pigeon-inspired artificial nanochannel can be modulated by moderate magnetic field in a fast and noncontacting way. The ionic current, as well as rectifying ability and conductance is controlled by the magnetic field reversibly through elastic deformation of the nanochannel. Different gating effects are obtained at the two sides of the asymmetrically conical nanochannel due to the different response models. The magnetic gated nanochannel system also exhibits an excellent stability and a quick response in a noncontacting way, which may be promising in electronic devices related to biological or healthcare applications.


Asunto(s)
Biomimética/métodos , Animales , Materiales Biomiméticos/química , Columbidae , Transporte Iónico , Nanoestructuras/química , Nanotecnología/métodos
9.
Angew Chem Int Ed Engl ; 57(26): 7790-7794, 2018 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-29687555

RESUMEN

Nanochannels based on smart DNA hydrogels as stimulus-responsive architecture are presented for the first time. In contrast to other responsive molecules existing in the nanochannel in monolayer configurations, the DNA hydrogels are three-dimensional networks with space negative charges, the ion flux and rectification ratio are significantly enhanced. Upon cyclic treatment with K+ ions and crown ether, the DNA hydrogel states could be reversibly switched between less stiff and stiff networks, providing the gating mechanism of the nanochannel. Based on the architecture of DNA hydrogels and pH stimulus, cation or anion transport direction could be precisely controlled and multiple gating features are achieved. Meanwhile, G-quadruplex DNA in the hydrogels might be replaced by other stimulus-responsive DNA molecules, peptides, or proteins, and thus this work opens a new route for improving the functionalities of nanochannel by intelligent hydrogels.

10.
ChemSusChem ; : e202401922, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39340214

RESUMEN

Waste plastics accumulation, such as commonly used polyethylene terephthalate (PET), has caused serious environmental pollution and resource squander. Glycolysis is a reliable closed-loop PET recycling method, which limited by the high cost and complex catalysts preparation processes. Here we report a simple synergistic catalytic strategy by premixing zinc acetate and cheap alkalis in ethylene glycol, which could achieve complete glycolysis at 180 ℃ within 2 hours, and a bis(hydroxyethyl) terephthalate (BHET) yield of 86.4%. This may be attributed to the free hydroxide ions not only enhancing the nucleophilicity of oxygen in ethylene glycol and making it easy to attack carbonyl groups, but also accelerating the swelling and dissolution of PET. Meanwhile, the in-situ generated Zn-glycolate and zinc oxide nanoparticles (ZnO NPs) activated the oxygen in the carbonyl group, making the carbon cations more electropositive. Further recycling experiments and techno-economic analysis indicated that our synergistic strategy significantly reduced industrial costs and expected to achieve large-scale industrial applications.

11.
Sci China Life Sci ; 67(7): 1398-1412, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38602587

RESUMEN

Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O2) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O2 and Pt(IV). O2 introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.


Asunto(s)
Cisplatino , Nanopartículas , Tolerancia a Radiación , Humanos , Cisplatino/farmacología , Cisplatino/uso terapéutico , Línea Celular Tumoral , Animales , Tolerancia a Radiación/efectos de los fármacos , Nanopartículas/química , Profármacos/farmacología , Profármacos/uso terapéutico , Profármacos/química , Fármacos Sensibilizantes a Radiaciones/farmacología , Biomimética , Ratones , Estrés Oxidativo/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Oxígeno/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Reparación del ADN/efectos de los fármacos , Antineoplásicos/farmacología , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Proliferación Celular/efectos de los fármacos
12.
Adv Mater ; 36(29): e2401222, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38690593

RESUMEN

Tumor cells harness Ca2+ to maintain cellular homeostasis and withstand external stresses from various treatments. Here, a dual-channel Ca2+ nanomodulator (CAP-P-NO) is constructed that can induce irreversible intracellular Ca2+ disorders via the redistribution of tumor-inherent Ca2+ for disrupting cellular homeostasis and thus improving tumor radiosensitivity. Stimulated by tumor-overexpressed acid and glutathione, capsaicin and nitric oxide are successively escaped from CAP-P-NO to activate the transient receptor potential cation channel subfamily V member 1 and the ryanodine receptor for the influx of extracellular Ca2+ and the release of Ca2+ in the endoplasmic reticulum, respectively. The overwhelming level of Ca2+ in tumor cells not only impairs the function of organelles but also induces widespread changes in the gene transcriptome, including the downregulation of a set of radioresistance-associated genes. Combining CAP-P-NO treatment with radiotherapy achieves a significant suppression against both pancreatic and patient-derived hepatic tumors with negligible side effects. Together, the study provides a feasible approach for inducing tumor-specific intracellular Ca2+ overload via endogenous Ca2+ redistribution and demonstrates the great potential of Ca2+ disorder therapy in enhancing the sensitivity for tumor radiotherapy.


Asunto(s)
Calcio , Humanos , Calcio/metabolismo , Animales , Línea Celular Tumoral , Ratones , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/química , Tolerancia a Radiación/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/radioterapia , Neoplasias/tratamiento farmacológico
13.
ACS Appl Bio Mater ; 7(6): 4116-4132, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38772009

RESUMEN

The management of multibacterial infections remains clinically challenging in the care and treatment of chronic diabetic wounds. Photodynamic therapy (PDT) offers a promising approach to addressing bacterial infections. However, the limited target specificity and internalization properties of traditional photosensitizers (PSs) toward Gram-negative bacteria pose significant challenges to their antibacterial efficacy. In this study, we designed an iron heme-mimetic PS (MnO2@Fe-TCPP(Zn)) based on the iron dependence of bacteria that can be assimilated by bacteria and retained in different bacteria strains (Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus) and which shows high PDT antibacterial efficacy. For accelerated wound healing after antibacterial treatment, MnO2@Fe-TCPP(Zn) was loaded into a zwitterionic hydrogel with biocompatibility and antifouling properties to form a nanocomposite antibacterial hydrogel (PSB-MnO2@Fe-TCPP(Zn)). In the multibacterial infectious diabetic mouse wound model, the PSB-MnO2@Fe-TCPP(Zn) hydrogel dressing rapidly promoted skin regeneration by effectively inhibiting bacterial infections, eliminating inflammation, and promoting angiogenesis. This study provides an avenue for developing broad-spectrum antibacterial nanomaterials for combating the antibiotic resistance crisis and promoting the healing of complex bacterially infected wounds.


Asunto(s)
Antibacterianos , Materiales Biocompatibles , Pruebas de Sensibilidad Microbiana , Fotoquimioterapia , Fármacos Fotosensibilizantes , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/química , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Hemo/química , Ensayo de Materiales , Hierro/química , Escherichia coli/efectos de los fármacos , Tamaño de la Partícula , Diabetes Mellitus Experimental/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología
14.
Adv Mater ; 36(15): e2311043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38190762

RESUMEN

The inherent immune and metabolic tumor microenvironment (TME) of most solid tumors adversely affect the antitumor efficacy of various treatments, which is an urgent issue to be solved in clinical cancer therapy. In this study, a mitochondrial localized in situ self-assembly system is constructed to remodel the TME by improving immunogenicity and disrupting the metabolic plasticity of cancer cells. The peptide-based drug delivery system can be pre-assembled into nanomicelles in vitro and form functional nanofibers on mitochondria through a cascade-responsive process involving reductive release, targeted enrichment, and in situ self-assembly. The organelle-specific in situ self-assemblyeffectively switches the role of mitophagy from pro-survival to pro-death, which finally induces intense endoplasmic reticulum stress and atypical type II immunogenic cell death. Disintegration of the mitochondrial ultrastructure also impedes the metabolic plasticity of tumor cells, which greatly promotes the immunosuppresive TME remodeling into an immunostimulatory TME. Ultimately, the mitochondrial localized in situ self-assembly system effectively suppresses tumor metastases, and converts cold tumors into hot tumors with enhanced sensitivity to radiotherapy and immune checkpoint blockade therapy. This study offers a universal strategy for spatiotemporally controlling supramolecular self-assembly on sub-organelles to determine cancer cell fate and enhance cancer therapy.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Diferenciación Celular , Sistemas de Liberación de Medicamentos , Muerte Celular Inmunogénica , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia
15.
Mater Today Bio ; 28: 101219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39280112

RESUMEN

Chemotherapy and radiotherapy in combination with sequence regimens are recognized as the current major strategy for suppressing postoperative tumor recurrence. However, systemic side effects and poor in-field cooperation of the two therapies seriously impair the therapeutic efficacy of patients. The combination of brachytherapy and chemotherapy through innovative biomaterials has proven to be an important strategy to achieve synergistic effects of radiotherapy and chemotherapy in-time and in-field. However, for postoperative chemoradiotherapy, as far as we know, there are few relevant reports. Herein, an injectable pH-responsive polypeptide-polysaccharide depot for concurrent in situ chemotherapy and brachytherapy was developed by encapsulating vincristine into iodine-125 radionuclide labeled hydrogel. This depot hydrogel was prepared by dynamic covalent bonds of Schiff base between aldehydeated hyaluronic acid and polyethylene glycol-polytyrosine. Therefore, this hydrogel enables smart response to tumor acidic microenvironment, rapid release of the encapsulated vincristine and an enhanced uptake effect by tumor cells, which significantly reduces IC50 of vincristine for the anaplasia Wilms' tumor cells in vitro. This depot hydrogel shows excellent stability and biocompatibility, and maintains for 14 days after in situ injection in a postoperative model of anaplasia Wilms' tumor. After injection at the cavity of tumor excision, responsively-released vincristine and the radioactive iodine-125 exerted excellent killing effects on residual tumor cells, inhibiting tumor relapse and liver metastasis of the recurrent tumor. Hence, this study proposes an effective therapeutic strategy for inhibiting anaplasia Wilms' tumor recurrence, which provides a new approach for concurrent postoperative chemo-radiotherapy and a desirable guidance in regimen execution of pediatric refractory tumors.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(1): 116-131, 2023 Jan 25.
Artículo en Zh | MEDLINE | ID: mdl-36738205

RESUMEN

Carbonic anhydrase IX (CAIX) is a transmembrane protein that is specifically overexpressed on the surface of hypoxic tumor cells. With the function of regulating the acidity of tumor cells both inside and outside, CAIX is closely related to tumor proliferation, invasion and metastasis. Therefore, CAIX is a promising target for tumor imaging and therapy. Herein, we summarized recent advances in CAIX-based tumor imaging, therapy and theranostics, and prospected future applications of using CAIX as an anti-tumor target.


Asunto(s)
Anhidrasas Carbónicas , Anhidrasa Carbónica IX , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral
17.
Quant Imaging Med Surg ; 13(2): 1083-1099, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36819243

RESUMEN

Background: The impacts of age and sex on brain structures related to cognitive function may be important for understanding the role of aging in Alzheimer disease for both sexes. We intended to investigate the age and sex differences of cortical morphology in middle-aged and older adults and their relationships with the decline of cognitive function. Methods: In this cross-sectional study, we examined the cortical morphology in 204 healthy middle-aged and older adult participants aged 45 to 89 years using structural magnetic resonance imaging (sMRI) data from the Dallas Lifespan Brain Study data set. Brain cortical thickness, surface complexity, and gyrification index were analyzed through a completely automated surface-based morphometric analysis using the CAT12 toolbox. Furthermore, we explored the correlation between cortical morphology differences and test scores for processing speed and working memory. Results: There were no significant interactions of age and sex with cortical thickness, fractal dimension, or gyrification index. Rather, we found that both males and females showed age-related decreases in cortical thickness, fractal dimension, and gyrification index. There were significant sex differences in the fractal dimension in middle-aged participants and the gyrification index in older adult participants. In addition, there were significant positive correlations between the cortical thickness of the right superior frontal gyrus and Wechsler Adult Intelligence Scale (WAIS)-III Letter-Number Sequencing test scores in males (r=0.394; P<0.001; 95% CI for r values 0.216-0.577) and females (r=0.344; P<0.001; 95% CI for r values 0.197-0.491), respectively. Furthermore, a significant relationship between the gyrification index of the right supramarginal gyrus (SupraMG) and WAIS-III Digit Symbol test scores was observed in older adult participants (r=0.375; P<0.001; 95% CI for r values 0.203-0.522). Conclusions: The results suggest that, compared with males, females have more extensive differences in cortical morphology. The gyrification index of the right SupraMG can be used as an imaging marker of sexual cognitive differences between males and females in older adults. This study helps to further understand sex differences in the aging of the brain and cognition.

18.
Adv Mater ; 35(29): e2301455, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37133969

RESUMEN

Tumor cells elicit metabolic reprogramming to establish an immunosuppressive tumor microenvironment (TME) for escaping from immunosurveillance. Therefore, interrupting the metabolic adaptation of tumor cells may be a promising strategy for TME immunomodulation, favoring immunotherapy. In this work, a tumor-specific peroxynitrite nanogenerator APAP-P-NO is constructed that can selectively disrupt metabolic homeostasis in melanoma cells. Stimulated by melanoma-characteristic acid, glutathione, and tyrosinase, APAP-P-NO can efficiently generate peroxynitrite through the in situ coupling of the produced superoxide anion and released nitric oxide. Metabolomics profiling reveals that the accumulated peroxynitrite induces a great decrease in metabolites in the tricarboxylic acid cycle. Meanwhile, the glycolysis-produced lactate drops sharply both intracellularly and extracellularly under peroxynitrite stress. Mechanistically, peroxynitrite impairs the activity of glyceraldehyde-3-phosphate dehydrogenase in glucose metabolism through S-nitrosylation. The metabolic alterations effectively reverse the immunosuppressive TME to evoke potent antitumor immune responses, including polarization of M2-like macrophages to M1phenotype, reduction of myeloid-derived suppressor cells and regulatory T cells, and restoration of CD8+ T cell infiltration. Combining APAP-P-NO with anti-PD-L1 achieves a significant inhibition against both primary and metastatic melanomas without systemic toxicities. Collectively, a tumor-specific peroxynitrite overproduction approach is developed and the possible mechanism of peroxynitrite-mediated TME immunomodulation is explored, providing a new strategy for facilitating immunotherapy sensitivity.


Asunto(s)
Melanoma , Neoplasias , Humanos , Ácido Peroxinitroso , Neoplasias/patología , Inmunoterapia , Melanoma/terapia , Inmunomodulación , Homeostasis , Microambiente Tumoral
19.
Adv Mater ; 35(38): e2302916, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37288841

RESUMEN

Cancer stem-like cells (CSCs), capable of indefinite self-renewal and differentiation, are considered to be the root cause of tumor radiotherapy (RT) resistance. However, the CSCs-targeted therapy still remains to be a great challenge because they are commonly located in the deep tumor making drugs hard to approach, and their hypoxic and acidic niche can further aggravate radioresistance. Herein, based on the finding that hypoxic CSCs highly express carbonic anhydrase IX (CAIX) on the cell membrane, a CAIX-targeted induced in situ self-assembly system on the surface of CSC is reported to overcome hypoxic CSC-mediated radioresistance. Via the sequential processes of "monomer release-target accumulation-surface self-assembly", the constructed peptide-based drug delivery system (CA-Pt) exhibits the advantages of deep penetration, amplified CAIX inhibition, and enhanced cellular uptake, which greatly relieves the hypoxic and acidic microenvironment to promote the hypoxic CSC differentiation and combines with platinum to boost the RT-inducing DNA damage. In both lung cancer tumor mouse and zebrafish embryo models, CA-Pt treatment can effectively assist RT in suppressing tumor growth and preventing tumor invasion and metastasis. This study uses a surface-induced self-assembly strategy to differentiate hypoxic CSCs, which may provide a universal treatment strategy for overcoming tumor radioresistance.


Asunto(s)
Neoplasias Pulmonares , Pez Cebra , Animales , Ratones , Línea Celular Tumoral , Péptidos , Diferenciación Celular , Microambiente Tumoral
20.
Biomater Sci ; 11(1): 248-262, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36440665

RESUMEN

Multimodality imaging-navigated precise phototherapy has been well-established as a promising strategy for enhancing the diagnostic and therapeutic efficiency of cancer in preclinical trials. However, proper theranostic agents with adequate biosafety and biological efficacy as well as simple components and preparations are still in great demand to promote the clinical translation of this regimen. Here, we developed a multifunctional nanosystem based on the self-assembly of FDA-approved indocyanine green (ICG) and 125I-labeled glycopeptides, which were composed of FDA-approved natural polysaccharide sodium alginate and endogenous tyrosine, for fluorescence imaging/single photon emission computed tomography (FLI/SPECT)-guided synergistic photothermal/photodynamic therapy (PTT/PDT) of breast cancer. The as-prepared ICG@ADY(125I) NPs possessed a stable nanostructure and radiolabel, an ICG-equivalent ROS and hyperthermia generation property, and a preferable photo/photothermal stability and biocompatibility, favoring its tumor homing, multimodality imaging, and phototherapy with high biosafety. Consequently, ICG@ADY(125I) NPs smoothly accumulated in tumors by virtue of their long blood circulation (t1/2 = 15.76 ± 1.34 h) and the EPR effect, thereby presenting highly sensitive FLI/SPECT images to realize cancer diagnosis. Guided by multimodality imaging, accurate PTT/PDT was performed using NIR laser irradiation, achieving a high tumor inhibition rate (81.8%) against 4T1 breast cancer models without appreciable side effects. Altogether, this theranostic nanosystem may have huge potential for the clinical diagnosis and treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Femenino , Verde de Indocianina/química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Medicina de Precisión , Nanopartículas/química , Fototerapia/métodos , Nanomedicina Teranóstica , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA