Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(10): e0118423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37796010

RESUMEN

Outer membrane vesicle (OMV)-delivered Pseudomonas quinolone signal (PQS) plays a critical role in cell-cell communication in Pseudomonas aeruginosa. However, the functions and mechanisms of membrane-enclosed PQS in interspecies communication in microbial communities are not clear. Here, we demonstrate that PQS delivered by both OMVs from P. aeruginosa and liposome reduces the competitiveness of Burkholderia cenocepacia, which usually shares the same niche in the lungs of cystic fibrosis patients, by interfering with quorum sensing (QS) in B. cenocepacia through the LysR-type regulator ShvR. Intriguingly, we found that ShvR regulates the production of the QS signals cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) by directly binding to the promoters of signal synthase-encoding genes. Perception of PQS influences the regulatory activity of ShvR and thus ultimately reduces QS signal production and virulence in B. cenocepacia. Our findings provide insights into the interspecies communication mediated by the membrane-enclosed QS signal among bacterial species residing in the same microbial community.IMPORTANCEQuorum sensing (QS) is a ubiquitous cell-to-cell communication mechanism. Previous studies showed that Burkholderia cenocepacia mainly employs cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) QS systems to regulate biological functions and virulence. Here, we demonstrate that Pseudomonas quinolone signal (PQS) delivered by outer membrane vesicles from Pseudomonas aeruginosa or liposome attenuates B. cenocepacia virulence by targeting the LysR-type regulator ShvR, which regulates the production of the QS signals BDSF and AHL in B. cenocepacia. Our results not only suggest the important roles of membrane-enclosed PQS in interspecies and interkingdom communications but also provide a new perspective on the use of functional nanocarriers loaded with QS inhibitors for treating pathogen infections.


Asunto(s)
Burkholderia cenocepacia , Percepción de Quorum , Humanos , Percepción de Quorum/genética , Virulencia/genética , Acil-Butirolactonas/metabolismo , Liposomas/metabolismo , Proteínas Bacterianas/genética , Burkholderia cenocepacia/genética , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica
2.
Life Sci ; 339: 122415, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218533

RESUMEN

AIMS: Amino acids (AAs) are known to play important roles in various physiological functions. However, their effect on sweet taste perception remains largely unknown. MAIN METHODS: We used Drosophila to evaluate the effect of each AA on sucrose taste perception. Individual AA was supplemented into diets and male flies were fed on these diets for 6 days. The proboscis extension response (PER) assay was applied to assess the sucrose taste sensitivity of treated flies. We further utilized the RNA-seq and germ-free (GF) flies to reveal the underlying mechanisms of sucrose taste sensitization induced by glutamine (Gln). KEY FINDINGS: We found that supplementation of Gln into diets significantly enhances sucrose taste sensitivity. This sucrose taste sensitization is dependent on gut microbiota and requires a specific gut bacterium Acetobacter tropicalis (A. tropicalis). We further found that CNMamide (CNMa) in the gut and CNMa receptor (CNMaR) in dopaminergic neurons are required for increased sucrose taste sensitivity by Gln diet. Finally, we demonstrated that a gut microbiota-gut-brain axis is required for Gln-induced sucrose taste sensitization. SIGNIFICANCE: These findings can advance understanding of the complex interplay between host physiology, dietary factors, and gut microbiota.


Asunto(s)
Drosophila , Percepción del Gusto , Animales , Masculino , Drosophila/fisiología , Percepción del Gusto/fisiología , Gusto/fisiología , Glutamina , Sacarosa , Eje Cerebro-Intestino , Drosophila melanogaster
3.
PNAS Nexus ; 2(8): pgad274, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37649583

RESUMEN

Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.

4.
Nat Commun ; 14(1): 7654, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996405

RESUMEN

Previous studies have demonstrated that bis-(3',5')-cyclic diguanosine monophosphate (bis-3',5'-c-di-GMP) is a ubiquitous second messenger employed by bacteria. Here, we report that 2',3'-cyclic guanosine monophosphate (2',3'-cGMP) controls the important biological functions, quorum sensing (QS) signaling systems and virulence in Ralstonia solanacearum through the transcriptional regulator RSp0980. This signal specifically binds to RSp0980 with high affinity and thus abolishes the interaction between RSp0980 and the promoters of target genes. In-frame deletion of RSp0334, which contains an evolved GGDEF domain with a LLARLGGDQF motif required to catalyze 2',3'-cGMP to (2',5')(3',5')-cyclic diguanosine monophosphate (2',3'-c-di-GMP), altered the abovementioned important phenotypes through increasing the intracellular 2',3'-cGMP levels. Furthermore, we found that 2',3'-cGMP, its receptor and the evolved GGDEF domain with a LLARLGGDEF motif also exist in the human pathogen Salmonella typhimurium. Together, our work provides insights into the unusual function of the GGDEF domain of RSp0334 and the special regulatory mechanism of 2',3'-cGMP signal in bacteria.


Asunto(s)
Guanosina Monofosfato , Ralstonia solanacearum , Humanos , Virulencia , Ralstonia solanacearum/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Sistemas de Mensajero Secundario , Regulación Bacteriana de la Expresión Génica , Biopelículas
5.
Microbiol Spectr ; 10(4): e0178722, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35856676

RESUMEN

Burkholderia cenocepacia is a human opportunistic pathogen that mostly employs two types of quorum-sensing (QS) systems to regulate its various biological functions and pathogenicity: the cis-2-dodecenoic acid (BDSF) system and the N-acyl homoserine lactone (AHL) system. In this study, we reported that oridonin, which was screened from a collection of natural products, disrupted important B. cenocepacia phenotypes, including motility, biofilm formation, protease production, and virulence. Genetic and biochemical analyses showed that oridonin inhibited the production of BDSF and AHL signals by decreasing the expression of their synthase-encoding genes. Furthermore, we revealed that oridonin directly binds to the regulator RqpR of the two-component system RqpSR that dominates the above-mentioned QS systems to inhibit the expression of the BDSF and AHL signal synthase-encoding genes. Oridonin also binds to the transcriptional regulator CepR of the cep AHL system to inhibit its binding to the promoter of bclACB. These findings suggest that oridonin could potentially be developed as a new QS inhibitor against pathogenic B. cenocepacia. IMPORTANCE Burkholderia cenocepacia is an important human opportunistic pathogen that can cause life-threatening infections in susceptible individuals. It employs quorum-sensing (QS) systems to regulate biological functions and virulence. In this study, we have identified a lead compound, oridonin, that is capable of interfering with B. cenocepacia QS signaling and physiology. We demonstrate that oridonin suppressed cis-2-dodecenoic acid (BDSF) and N-acyl homoserine lactone (AHL) signal production and attenuated virulence in B. cenocepacia. Oridonin also impaired QS-regulated phenotypes in various Burkholderia species. These results suggest that oridonin could interfere with QS signaling in many Burkholderia species and might be developed as a new antibacterial agent.


Asunto(s)
Burkholderia cenocepacia , Acil-Butirolactonas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderia cenocepacia/genética , Burkholderia cenocepacia/metabolismo , Diterpenos de Tipo Kaurano , Regulación Bacteriana de la Expresión Génica , Humanos , Percepción de Quorum , Virulencia/genética
6.
Commun Biol ; 5(1): 496, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614320

RESUMEN

Previous reports indicate that proline utilization A (PutA) is involved in the oxidation of proline to glutamate in many bacteria. We demonstrate here that in addition to its role in proline catabolism, PutA acts as a global regulator to control the important biological functions and virulence of Ralstonia solanacearum. PutA regulates target gene expression levels by directly binding to promoter DNA, and its regulatory activity is enhanced by L-proline. Intriguingly, we reveal that the cofactors NAD+ and FAD boost the enzymatic activity of PutA for converting L-proline to L-glutamic acid but inhibit the regulatory activity of PutA for controlling target gene expression. Our results present evidence that PutA is a proline metabolic enzyme that also functions as a global transcriptional regulator in response to its substrate and cofactors and provide insights into the complicated regulatory mechanism of PutA in bacterial physiology and pathogenicity.


Asunto(s)
Prolina Oxidasa , Prolina , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de la Membrana/metabolismo , Prolina/genética , Prolina Oxidasa/genética , Prolina Oxidasa/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA