Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 571(7766): E10, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31270456

RESUMEN

An Amendment to this paper has been published and can be accessed via a link at the top of the paper. The original Letter has not been corrected.

2.
Nature ; 553(7686): 91-95, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29160310

RESUMEN

Treatments that target immune checkpoints, such as the one mediated by programmed cell death protein 1 (PD-1) and its ligand PD-L1, have been approved for treating human cancers with durable clinical benefit. However, many patients with cancer fail to respond to compounds that target the PD-1 and PD-L1 interaction, and the underlying mechanism(s) is not well understood. Recent studies revealed that response to PD-1-PD-L1 blockade might correlate with PD-L1 expression levels in tumour cells. Hence, it is important to understand the mechanistic pathways that control PD-L1 protein expression and stability, which can offer a molecular basis to improve the clinical response rate and efficacy of PD-1-PD-L1 blockade in patients with cancer. Here we show that PD-L1 protein abundance is regulated by cyclin D-CDK4 and the cullin 3-SPOP E3 ligase via proteasome-mediated degradation. Inhibition of CDK4 and CDK6 (hereafter CDK4/6) in vivo increases PD-L1 protein levels by impeding cyclin D-CDK4-mediated phosphorylation of speckle-type POZ protein (SPOP) and thereby promoting SPOP degradation by the anaphase-promoting complex activator FZR1. Loss-of-function mutations in SPOP compromise ubiquitination-mediated PD-L1 degradation, leading to increased PD-L1 levels and reduced numbers of tumour-infiltrating lymphocytes in mouse tumours and in primary human prostate cancer specimens. Notably, combining CDK4/6 inhibitor treatment with anti-PD-1 immunotherapy enhances tumour regression and markedly improves overall survival rates in mouse tumour models. Our study uncovers a novel molecular mechanism for regulating PD-L1 protein stability by a cell cycle kinase and reveals the potential for using combination treatment with CDK4/6 inhibitors and PD-1-PD-L1 immune checkpoint blockade to enhance therapeutic efficacy for human cancers.


Asunto(s)
Antígeno B7-H1/metabolismo , Proteínas Cullin/metabolismo , Ciclina D/metabolismo , Quinasa 4 Dependiente de la Ciclina/metabolismo , Vigilancia Inmunológica , Neoplasias/inmunología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Escape del Tumor/inmunología , Proteínas 14-3-3/metabolismo , Animales , Antígeno B7-H1/biosíntesis , Proteínas Cdh1/metabolismo , Ciclo Celular , Línea Celular , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Masculino , Ratones , Proteínas Nucleares/química , Fosforilación , Receptor de Muerte Celular Programada 1/metabolismo , Neoplasias de la Próstata/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Represoras/química
3.
Nature ; 546(7658): 426-430, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28607489

RESUMEN

D-type cyclins (D1, D2 and D3) and their associated cyclin-dependent kinases (CDK4 and CDK6) are components of the core cell cycle machinery that drives cell proliferation. Inhibitors of CDK4 and CDK6 are currently being tested in clinical trials for patients with several cancer types, with promising results. Here, using human cancer cells and patient-derived xenografts in mice, we show that the cyclin D3-CDK6 kinase phosphorylates and inhibits the catalytic activity of two key enzymes in the glycolytic pathway, 6-phosphofructokinase and pyruvate kinase M2. This re-directs the glycolytic intermediates into the pentose phosphate (PPP) and serine pathways. Inhibition of cyclin D3-CDK6 in tumour cells reduces flow through the PPP and serine pathways, thereby depleting the antioxidants NADPH and glutathione. This, in turn, increases the levels of reactive oxygen species and causes apoptosis of tumour cells. The pro-survival function of cyclin D-associated kinase operates in tumours expressing high levels of cyclin D3-CDK6 complexes. We propose that measuring the levels of cyclin D3-CDK6 in human cancers might help to identify tumour subsets that undergo cell death and tumour regression upon inhibition of CDK4 and CDK6. Cyclin D3-CDK6, through its ability to link cell cycle and cell metabolism, represents a particularly powerful oncoprotein that affects cancer cells at several levels, and this property can be exploited for anti-cancer therapy.


Asunto(s)
Ciclina D3/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Estrés Oxidativo/efectos de los fármacos , Vía de Pentosa Fosfato/efectos de los fármacos , Fosfofructoquinasa-1/metabolismo , Fosforilación/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Purinas/farmacología , Purinas/uso terapéutico , Piruvato Quinasa/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Serina/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Skin Res Technol ; 29(9): e13419, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753685

RESUMEN

BACKGROUND: Pyroptosis has been implicated in the development of human diseases, including vitiligo. TanshinoneIIA has been confirmed to play anti-vitiligo role. However, whether tanshinoneIIA inhibits vitiligo progression via regulating cell pyroptosis remains unclear. METHODS: Hydrogen peroxide (H2 O2 )-induced melanocytes were used to mimic vitiligo cell model in vitro. Cell viability was assessed by cell counting kit 8 assay, and reactive oxygen species (ROS) production was detected by DCFH-DA staining. Nod-like receptor protein 3 (NLRP3) expression was detected by quantitative real-time PCR, western blot and immunofluorescence staining. Cell pyroptosis was measured using flow cytometry, and the contents of interleukin-1ß and interleukin-18 were determined by ELISA. Besides, the protein levels of apoptosis-associated speck-like protein containing CARD (ASC) and cleaved-Caspase-1 were examined by western blot analysis. RESULTS: H2 O2 could induce ROS production, NLRP3 expression and pyroptosis in melanocytes. TanshinoneIIA inhibited ROS production, pyroptosis, and the expression of NLRP3, ASC and cleaved-caspase-1 in H2 O2 -induced melanocytes. Compared with the function of ROS inhibitor (NAC), tanshinoneIIA acted as a ROS scavenger to relieve melanocyte pyroptosis. In addition, NLRP3 inhibitor (MCC950) also could aggravate the inhibition effect of tanshinoneIIA on melanocyte pyroptosis. CONCLUSION: TanshinoneIIA suppressed melanocyte pyroptosis probably through modulating the ROS/NLRP3 signaling axis, which provides the evidence for therapeutic effect in vitiligo.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR , Vitíligo , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Especies Reactivas de Oxígeno , Inflamasomas/metabolismo , Inflamasomas/farmacología , Piroptosis , Vitíligo/tratamiento farmacológico , Caspasa 1/metabolismo , Caspasa 1/farmacología
5.
Anim Biotechnol ; 34(7): 2251-2261, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35714975

RESUMEN

Long noncoding RNAs (lncRNAs) play important roles in immune regulation in humans and animals. The lnc-34015 was discovered to be critical for the development of muscles, based on the muscle transcriptome of pigs; however, the underlying molecular mechanism requires better understanding. Here, the sequence characteristics of lnc-34015 were analyzed and a competitive endogenous RNA regulatory network of lncRNA was predicted. The developmental expression trend and tissue expression profiles of lnc-34015 were investigated using quantitative polymerase chain reaction. The lnc-34015 sequence is overlapped with introns 11 and 12 of CWF19L1, while CWF19L1, PKD2L1, and CHUK were identified as cis-regulatory genes of lnc-34015. Bioinformatics analyses revealed that lnc-34015 binds to 15 microRNAs (miRNAs), including miR-3646, miR-377-3p, and miR-190b-3p, to regulate downstream gene expression. GO and KEGG enrichment results show that lnc-34015 was mainly involved in cell proliferation, stress response, transcriptional regulation, and alternative splicing. The expression trend of lnc-34015 in muscle was similar to that of target genes and opposite to that of miRNAs. The expression of lnc-34015 was significantly higher in the porcine small intestine and IPEC-J2 cells. Our findings suggest that lnc-34015 regulates CHUK, ZBTB20, and XIAP gene expression by competing with endogenous RNAs to regulate porcine inflammatory responses.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , Animales , Porcinos/genética , MicroARNs/genética , MicroARNs/metabolismo , Transcriptoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Receptores de Superficie Celular/genética , Canales de Calcio/genética
6.
Arch Environ Contam Toxicol ; 84(4): 453-465, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37129623

RESUMEN

Pollution from electronic-waste (E-waste) dismantling is of great concern. This study investigated the concentrations of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and polybrominated diphenyl ethers (PBDEs) in 253 cropland soil samples around an abandoned E-waste dismantling site in Taizhou city, Zhejiang province in China, using an analytical method which simultaneously extracted, purified and determined the identity and quantity of the three types of persistent organic pollutants. Meanwhile, their spatial distributions, pollution characteristics, and risk assessments were further analyzed. Total PCBs in the test soils ranged from below method detection limits (ND) to 2985.25 µg kg-1 on a dry weight basis (d.w.), and the spatial distribution indicated a "hot spot" of PCBs pollution in the study area. The PAHs were detected in all samples with total concentrations ranging from 4.99 to 2723.06 µg kg-1 d.w. The distribution of PBDEs showed the pollution characteristics of "family-run workshops", with a total content range of ND ~ 899.34 µg kg-1 d.w., of which BDE209 was typically the dominant congener, accounting for 74.05% of the total PBDEs content in the test soils, with the highest content reaching 857.72 µg kg-1 d.w. Results showed that the ecological and lifetime carcinogenic risks of PCBs and PAHs were low in the study area, but the health risk caused by oral ingestion and dermal contact accounted for the highest proportion of the total exposure risks, while inhalation could be ignored. PBDEs in soils of the study area were a potential chronic non-carcinogenic risk, particularly for children. Therefore, in order to protect human health and environment, it is necessary to regulate the management of E-waste dismantling sites and pollution control.


Asunto(s)
Residuos Electrónicos , Bifenilos Policlorados , Niño , Humanos , Bifenilos Policlorados/análisis , Monitoreo del Ambiente , Residuos Electrónicos/análisis , Éteres Difenilos Halogenados/análisis , Granjas , China , Suelo , Medición de Riesgo
7.
Aesthetic Plast Surg ; 47(2): 833-841, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36470987

RESUMEN

BACKGROUND: Androgenetic alopecia can affect up to 70% of males and 40% of females; however, certain therapeutic medications offer partial and transitory improvement but with major side effects. Dendrobium officinale polysaccharide (DOP) has been reported to improve androgen-related hair loss in mice, but the molecular mechanism remains unclear. OBJECTIVES: To explore the effects of DOP on androgenetic alopecia. METHODS: In this study, testosterone was subcutaneously administered to shave dorsa skin of mice to establish androgenetic alopecia; the effects of DOP in androgenetic alopecia were explored by DOP administration. RESULTS: Testosterone treatment extended the time of skin growing dark and hair growing, decreased the mean numbers of follicles in skin tissues, decreased ß-catenin and cyclin D1 levels, and elevated testosterone, DHT (dihydrotestosterone), and 5α-reductase levels. In contrast, DOP administration shortened skin growing dark and hair growing times, promoted follicle cell proliferation, increased follicle numbers, increased ß-catenin and cyclin D1 levels, and decreased testosterone, DHT, and 5α-reductase levels. CONCLUSION: DOP application significantly improved testosterone-induced hair follicle miniaturization and hair loss, possibly through affecting the Wnt signaling and hair follicle stem cell functions. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Dendrobium , Testosterona , Masculino , Femenino , Ratones , Animales , Testosterona/farmacología , beta Catenina/farmacología , Ciclina D1/farmacología , Cabello , Alopecia/inducido químicamente , Alopecia/tratamiento farmacológico , Polisacáridos/farmacología
8.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108359

RESUMEN

Current therapies for T-cell acute leukemia are based on risk stratification and have greatly improved the survival rate for patients, but mortality rates remain high owing to relapsed disease, therapy resistance, or treatment-related toxicities/infection. Patients with relapsed disease continue to have poor outcomes. In the past few years, newer agents have been investigated to optimize upfront therapies for higher-risk patients in the hopes of decreasing relapse rates. This review summarizes the progress of chemo/targeted therapies using Nelarabine/Bortezomib/CDK4/6 inhibitors for T-ALL in clinical trials and novel strategies to target NOTCH-induced T-ALL. We also outline immunotherapy clinical trials using monoclonal/bispecific T-cell engaging antibodies, anti-PD1/anti-PDL1 checkpoint inhibitors, and CAR-T for T-ALL therapy. Overall, pre-clinical studies and clinical trials showed that applying monoclonal antibodies or CAR-T for relapsed/refractory T-ALL therapy is promising. The combination of target therapy and immunotherapy may be a novel strategy for T-ALL treatment.


Asunto(s)
Anticuerpos Biespecíficos , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Humanos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Receptores Quiméricos de Antígenos/uso terapéutico , Inmunoterapia , Anticuerpos Monoclonales/uso terapéutico , Linfocitos T , Anticuerpos Biespecíficos/uso terapéutico , Inmunoterapia Adoptiva
9.
Transgenic Res ; 31(1): 59-72, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34741281

RESUMEN

Leptin is a well-known adipokine that plays critical role in adiposity. To further investigate the role of leptin in adiposity, we utilized leptin overexpressing transgenic pigs and evaluated the effect of leptin on growth and development, fat deposition, and lipid metabolism at tissue and cell level. Leptin transgenic pigs were produced and divided into two groups: elevated leptin expression (leptin ( +)) and normal leptin expression group (control). Results indicated that leptin ( +) pigs had elevated leptin protein and mRNA expression levels and exhibited sluggish growth and development followed by decreased subcutaneous fat thickness, low serum triglycerides, saturated, unsaturated fatty acids and high cholesterol esters (p < 0.05). There were differences in the lipid metabolism related genes at different fat depots, including upregulation of PPARγ, AGPAT6, PLIN2, HSL and ATGL in subcutaneous, PPARγ in perirenal, and FAT/CD36 and PLIN2 in mesenteric adipose tissues and downregulation of AGPAT6 and ATGL in perirenal and AGPAT6 in mesenteric adipose tissues (p < 0.05). Additionally, in-vitro cultured leptin ( +) preadipocytes exhibited upregulation of PPARγ, FAT/CD36, ACACA, AGPAT, PLIN2, ATGL and HSL as compared to control (p < 0.05). These findings suggested that homeostasis imbalance in lipolysis and lipogenesis at adipose tissue and adipocytes levels led to low subcutaneous fat depots in leptin overexpression pigs. These pigs can act as model for obesity and related metabolic disorder.


Asunto(s)
Leptina , PPAR gamma , Tejido Adiposo/metabolismo , Animales , Leptina/genética , Leptina/metabolismo , Lipólisis , Obesidad/genética , PPAR gamma/genética , PPAR gamma/metabolismo , PPAR gamma/farmacología , Porcinos/genética , Triglicéridos/genética
10.
Environ Microbiol ; 23(2): 669-681, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32419297

RESUMEN

Soil microbial communities are often not resistant to the impact caused by microbial invasions, both in terms of structure and functionality, but it remains unclear whether these changes persist over time. Here, we used three strains of Escherichia coli O157:H7 (E. coli O157:H7), a species used for modelling bacterial invasions, to evaluate the resilience of the bacterial communities from four Chinese soils to invasion. The impact of E. coli O157:H7 strains on soil native communities was tracked for 120 days by analysing bacterial community composition as well as their metabolic potential. We showed that soil native communities were not resistant to invasion, as demonstrated by a decline in bacterial diversity and shifts in bacterial composition in all treatments. The resilience of native bacterial communities (diversity and composition) was inversely correlated with invader's persistence in soils (R2 = 0.487, p < 0.001). Microbial invasions also impacted the functionality of the soil communities (niche breadth and community niche), the degree of resilience being dependent on soil or native community diversity. Collectively, our results indicate that bacteria invasions can potentially leave a footprint in the structure and functionality of soil communities, indicating the need of assessing the legacy of introducing exotic species in soil environments.


Asunto(s)
Escherichia coli O157/crecimiento & desarrollo , Escherichia coli O157/metabolismo , Especies Introducidas , Interacciones Microbianas/fisiología , Microbiología del Suelo , Ecosistema , Microbiota , Suelo/química
11.
Small ; 17(47): e2103855, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34643061

RESUMEN

Full-Stokes polarimeters, equipped with the capability of discriminating light polarization states, can find important applications in various optical and optoelectronic devices. Nevertheless, currently most full-Stokes polarimeters require complex and bulky optical elements or optical metasystems integrated with metasurfaces, which can increase the cost and cause energy loss. Here, the anisotropy of chiral 2D perovskite single crystals is explored and the full-Stokes polarimeter based on pure chiral 2D perovskite single crystals is reported. By using optical anisotropy and the ability to distinguish the helicity of the circularly polarized light, chiral 2D perovskite polarimeter integrates the polarizer, waveplate, and photodetector together and thus can be able to discriminate the polarization states of light. The as-fabricated device exhibits a photoresponsivity of 0.136 A W-1 and a detectivity of 1.2 × 1010 Jones. This study provides a paradigm to construct filterless on-chip Stokes polarimeter with great simplicity and low cost.

12.
J Recept Signal Transduct Res ; 41(2): 196-201, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32772776

RESUMEN

PURPOSE: microRNA-128 (miR-128), a brain-enriched microRNA, has been reported to play a crucial role in the treatment of diseases. The c-Jun N-terminal kinase (JNK) signaling pathway exerts various biological functions such as regulation of cell proliferation, differentiation and apoptosis. In this study, we investigated the role of the miRNA-128-JNK signaling pathway in proliferation, apoptosis and autophagy of porcine adipose-derived stem cells (ASCs). METHODS: After over-expressing miR-128 in porcine ASCs, cell proliferation was determined by 2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT) method, cell apoptosis was observed by Flow cytometry (FCM), the expression of miR-128, B-cell lymphoma 2 (Bcl-2), and Bcl-2-associated X protein (Bax) was measured by RNA preparation and reverse transcription polymerase chain reaction (RT-PCR), and protein expression of JNK, phosphorylated JNK (p-JNK) and LC3B was analyzed by Western Blot analysis. RESULTS: The over-expression of miR-128 potently promoted cell proliferation and autophagy while suppressed the apoptosis of porcine ASCs. In addition, the down-regulated expression level of p-JNK was detected in miR-128-over-expressed porcine ASCs. However, followed by the block of the JNK signaling pathway using SP600125 inhibitor, the effects of miR-128 on the proliferation, apoptosis and autophagy of porcine ASCs were significantly suppressed. CONCLUSION: It is demonstrated that the miR-128-JNK signaling pathway is a potential therapeutic target for the treatment of obesity.


Asunto(s)
Proliferación Celular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Animales , Antracenos/farmacología , Apoptosis/genética , Autofagia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal/genética , Porcinos
13.
Biochem Genet ; 59(6): 1396-1412, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33891260

RESUMEN

Gynaephora qinghaiensis (Lepidoptera: Lymantriidae: Gynaephora), a serious economic pest in alpine meadows, is mainly distributed in Yushu prefecture, Qinghai province, China. In this study, we aimed to investigate the genetic diversity and population structure of G. qinghaiensis through analyzing the sequence of 194 mitochondrial cytochrome oxidase subunit (COI) genes (658 bp in length) identified from 10 geographic populations located in three different countries, including Zhiduo, Zaduo, and Chengduo, of Yushu prefecture. Eleven haplotypes were identified from all populations of G. qinghaiensis with high levels of haplotype diversity (0.78500) and low levels of nucleotide diversity (0.00511). High levels of genetic differentiation and low levels of gene flow were also detected among the populations of G. qinghaiensis. Analysis of molecular variance (AMOVA) showed that 90.13% of the variation was attributed to distribution among groups (Chengduo, Zhiduo, and Zaduo), and 5.22% and 4.65% were, respectively, attributed to distribution among populations, within group, and within populations. The result of mantel test showed a highly significant positive correlation (P < 0.01) between FST and geographical distance. A maximum likelihood tree showed that most haplotypes were grouped into three clusters corresponding to the three counties, suggesting a significant phylogeographic structure in the populations of G. qinghaiensis. The haplotype networks revealed that H2 may be the most primitive haplotype and the most adaptable in nature. Populations 7# and 8# had haplotype H2 and higher haplotype diversity; therefore, we speculated that the G. qinghaiensis in both populations were more adaptable to the environment and had greater outbreak potential and, therefore, should be focused on in terms of prevention and control. Our findings provide valuable information for further study of the population structure and phylogeny of G. qinghaiensis and provide a theoretical basis for the control of G. qinghaiensis.


Asunto(s)
Complejo IV de Transporte de Electrones , Variación Genética , China , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/genética , Genes Mitocondriales , Genética de Población , Haplotipos , Filogenia , Filogeografía
14.
Exp Dermatol ; 29(7): 647-658, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472715

RESUMEN

Psoriasis is a recrudescent chronic immune-mediated inflammatory dermatosis; the production and release of proinflammatory cytokines/chemokines such as TNF-α has been regarded as critical issues during psoriasis pathogenesis. Based on online microarray profiles, the expression of the transcription factor GATA3 was downregulated in psoriasis lesion tissues. In the present study, we searched for miRNAs that might be related to TNF-α and GATA3 to investigate an in-depth understanding of psoriasis pathogenesis. Herein, higher TNF-α and GATA3 protein levels were observed in psoriasis lesion tissues and that GATA3 overexpression significantly reverses TNF-α-induced increases within the production of IL-6 and CXCL8 in keratinocytes. TNF-α stimulation increases miR-155 expression dose-independently, and the miR-155 inhibitor significantly reverses TNF-α-induced suppression of GATA3 protein levels and increases IL-6 and CXCL8 production. miR-155 could suppress the expression of GATA3 by targeting its 3'UTR, while GATA3 could activate the transcription of IL37 by targeting its promoter region. miR-155 overexpression reduces IL37 protein and increases CXCL8 production; GATA3 overexpression might significantly attenuate the effects of miR-155 overexpression. In contrast to GATA3, miR-155 expression is significantly upregulated in psoriasis lesion tissue and is negatively correlated with GATA3 and IL37. In summary, the miR-155/GATA3/IL37 axis modulates the production of IL-6 and CXCL8 upon TNF-α stimulation to affect psoriasis development. Thus, miR-155/GATA3/IL37 may be potent targets for psoriasis treatment, which needs further in vivo and clinical investigation.


Asunto(s)
Factor de Transcripción GATA3/metabolismo , Interleucina-1/metabolismo , MicroARNs/metabolismo , Psoriasis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regiones no Traducidas 3' , Factor de Transcripción GATA3/antagonistas & inhibidores , Factor de Transcripción GATA3/genética , Células HaCaT , Humanos , Interleucina-1/genética , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Regiones Promotoras Genéticas , Psoriasis/genética , Piel/metabolismo , Transfección , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/farmacología
15.
Circ Res ; 122(4): 568-582, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29301854

RESUMEN

RATIONALE: Genome-wide association studies identified single-nucleotide polymorphisms near the SORT1 locus strongly associated with decreased plasma LDL-C (low-density lipoprotein cholesterol) levels and protection from atherosclerotic cardiovascular disease and myocardial infarction. The minor allele of the causal SORT1 single-nucleotide polymorphism locus creates a putative C/EBPα (CCAAT/enhancer-binding protein α)-binding site in the SORT1 promoter, thereby increasing in homozygotes sortilin expression by 12-fold in liver, which is rich in this transcription factor. Our previous studies in mice have showed reductions in plasma LDL-C and its principal protein component, apoB (apolipoprotein B) with increased SORT1 expression, and in vitro studies suggested that sortilin promoted the presecretory lysosomal degradation of apoB associated with the LDL precursor, VLDL (very-low-density lipoprotein). OBJECTIVE: To determine directly that SORT1 overexpression results in apoB degradation and to identify the mechanisms by which this reduces apoB and VLDL secretion by the liver, thereby contributing to understanding the clinical phenotype of lower LDL-C levels. METHODS AND RESULTS: Pulse-chase studies directly established that SORT1 overexpression results in apoB degradation. As noted above, previous work implicated a role for lysosomes in this degradation. Through in vitro and in vivo studies, we now demonstrate that the sortilin-mediated route of apoB to lysosomes is unconventional and intersects with autophagy. Increased expression of sortilin diverts more apoB away from secretion, with both proteins trafficking to the endosomal compartment in vesicles that fuse with autophagosomes to form amphisomes. The amphisomes then merge with lysosomes. Furthermore, we show that sortilin itself is a regulator of autophagy and that its activity is scaled to the level of apoB synthesis. CONCLUSIONS: These results strongly suggest that an unconventional lysosomal targeting process dependent on autophagy degrades apoB that was diverted from the secretory pathway by sortilin and provides a mechanism contributing to the reduced LDL-C found in individuals with SORT1 overexpression.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Apolipoproteína B-100/metabolismo , Autofagia , Proteolisis , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Línea Celular Tumoral , Células Cultivadas , Hepatocitos/metabolismo , Humanos , Ratones , Ratas , Vías Secretoras
16.
Mol Cell ; 45(5): 598-609, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22306293

RESUMEN

Pyruvate kinase isoform M2 (PKM2) is a glycolysis enzyme catalyzing conversion of phosphoenolpyruvate (PEP) to pyruvate by transferring a phosphate from PEP to ADP. We report here that PKM2 localizes to the cell nucleus. The levels of nuclear PKM2 correlate with cell proliferation. PKM2 activates transcription of MEK5 by phosphorylating stat3 at Y705. In vitro phosphorylation assays show that PKM2 is a protein kinase using PEP as a phosphate donor. ADP competes with the protein substrate binding, indicating that the substrate may bind to the ADP site of PKM2. Our experiments suggest that PKM2 dimer is an active protein kinase, while the tetramer is an active pyruvate kinase. Expression of a PKM2 mutant that exists as a dimer promotes cell proliferation, indicating that protein kinase activity of PKM2 plays a role in promoting cell proliferation. Our study reveals an important link between metabolism alteration and gene expression during tumor transformation and progression.


Asunto(s)
Regulación de la Expresión Génica , Piruvato Quinasa/fisiología , Transcripción Genética , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular , Humanos , MAP Quinasa Quinasa 5/genética , MAP Quinasa Quinasa 5/metabolismo , Fosforilación , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Factor de Transcripción STAT3/metabolismo
17.
Biosci Biotechnol Biochem ; 84(7): 1436-1443, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32299303

RESUMEN

Melanin metabolism disorders may cause severe impacts on the psychological and social activities of patients. Different from the other two steps of melanin metabolism, namely synthesis and transport, little has been known about the mechanism of melanin degradation. Isoimperatorin (ISO) suppressed the activity of tyrosinase, an essential enzyme in melanin biosynthesis, hence, we investigated the effects and mechanism of ISO in melanin reduction. ISO stimulation significantly reduces the melanin contents and PMEL 17 protein levels; meanwhile, the activity and the protein levels of two critical lysosomal enzymes, Cathepsin B and Cathepsin D, can be significantly increased by ISO treatment. MiR-3619 inhibited the expression of CSTB and CSTD, therefore affecting ISO-induced degradation of melanin. In summary, ISO reduces the melanin content via miR-3619/CSTB and miR-3619/CSTD axes. ISO could be a potent skin-whitening agent, which needs further in vivo and clinical investigation.


Asunto(s)
Catepsina B/metabolismo , Catepsina D/metabolismo , Medicamentos Herbarios Chinos/farmacología , Furocumarinas/farmacología , Queratinocitos/metabolismo , Melaninas/metabolismo , MicroARNs/metabolismo , Transducción de Señal/efectos de los fármacos , Preparaciones para Aclaramiento de la Piel/farmacología , Catepsina B/genética , Catepsina D/genética , Técnicas de Silenciamiento del Gen , Células HaCaT , Humanos , MicroARNs/genética , Monofenol Monooxigenasa/antagonistas & inhibidores , Transducción de Señal/genética , Transfección , Antígeno gp100 del Melanoma/metabolismo
18.
Biochem Biophys Res Commun ; 511(4): 935-940, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30853180

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).. This article has been retracted at the request of < the Editor in Chief. The Editor in Chief has been made aware of numerous problems with this paper regarding authorship, poor or insufficient supervision of researchers and the unauthorized use of data acquired from a lab visit by one of the authors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Linfocitos T/citología , Animales , Recuento de Células , Autorrenovación de las Células , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Linfocitos T/metabolismo , Timocitos/citología , Timocitos/metabolismo , Timo/citología , Timo/crecimiento & desarrollo , Timo/metabolismo
19.
Arch Insect Biochem Physiol ; 100(3): e21553, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30656736

RESUMEN

As a pest on the Qinghai-Tibet Plateau, Gynaephora qinghaiensis causes severe damage to grassland vegetation and its pupae are also natural hosts of Thektogaster sp. To successfully parasitize, endoparasitoids generally introduce or secrete multiple parasitic factors into the host body during the spawning stage to suppress the host immune response. To study the parasitic effects of Thektogaster sp. on G. qinghaiensis, a transcriptome analysis of immune-related genes in parasitized and nonparasitized G. qinghaiensis pupae was performed. A total of 371,260,704 clean reads were assembled into 118,144 unigenes with an average length of 884.33 base pairs. Of these, 23,660 unigenes were annotated in at least one database and 94,484 unigenes were not annotated in any databases. These findings indicated that the majority of the genetic resources (79.97% of all unigenes) in Gynaephora should be further explored. Parasitization significantly affected the transcriptional profile of G. qinghaiensis pupae. The present study identified 12,322 differentially expressed genes and 57 immune-related genes were identified in parasitized G. qinghaiensis pupae. Most immune-related genes were downregulated, potentially resulting from the inhibitory effect of Thektogaster sp. on G. qinghaiensis pupae after parasitization. Overall, the transcriptome analysis sheds valuable light on the molecular mechanisms of G. qinghaiensis parasitization by Thektogaster sp. and promotes the development of novel biocontrol strategies for Gynaephora based on immune defense.


Asunto(s)
Interacciones Huésped-Parásitos , Inmunidad Innata/genética , Mariposas Nocturnas/inmunología , Transcriptoma/inmunología , Avispas/fisiología , Animales , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/inmunología , Interacciones Huésped-Parásitos/genética , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Parásitos/fisiología , Larva/crecimiento & desarrollo , Larva/fisiología , Mariposas Nocturnas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/parasitología , Pupa/genética , Pupa/crecimiento & desarrollo , Pupa/inmunología , Pupa/parasitología , Avispas/crecimiento & desarrollo
20.
Proteomics ; 18(23): e1800136, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30358111

RESUMEN

Steroid hormones play essential roles for living organisms. It has been long and well established that the endoplasmic reticulum (ER) and mitochondria are essential sites for steroid hormone biosynthesis because several steroidogenic enzymes are located in these organelles. The adrenal gland lipid droplet (LD) proteomes from human, macaque monkey, and rodent are analyzed, revealing that steroidogenic enzymes are also present in abundance on LDs. The enzymes found include 3ß-hydroxysteroid dehydrogenase (HSD3B) and estradiol 17ß-dehydrogenase 11 (HSD17B11). Analyses by Western blot and subcellular localization consistently demonstrate that HSD3B2 is localized on LDs. Furthermore, in vitro experiments confirm that the isolated LDs from HeLa cell stably expressing HSD3B2 or from rat adrenal glands have the capacity to convert pregnenolone to progesterone. Collectively, these data suggest that LDs may be important sites of steroid hormone metabolism. These findings may bring novel insights into the biosynthesis and metabolism of steroid hormones and the development of treatments for adrenal disorders.


Asunto(s)
Gotas Lipídicas/metabolismo , Glándulas Suprarrenales/metabolismo , Animales , Hormonas Esteroides Gonadales/metabolismo , Células HeLa , Humanos , Metabolismo de los Lípidos/fisiología , Macaca , Progesterona Reductasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA