Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 52(42): 7439-48, 2013 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-24044413

RESUMEN

Animal venoms contain a fascinating array of divergent peptide toxins that have cross-activities on different types of voltage-gated ion channels. However, the underlying mechanism remains poorly understood. Jingzhaotoxin-III (JZTX-III), a 36-residue peptide from the tarantula Chilobrachys jingzhao, is specific for Nav1.5 and Kv2.1 channels over the majority of other ion channel subtypes. JZTX-III traps the Nav1.5 DII voltage sensor at closed state by binding to the DIIS3-S4 linker. In this study, electrophysiological experiments showed that JZTX-III had no effect on five voltage-gated potassium channel subtypes (Kv1.4, Kv3.1, and Kv4.1-4.3), whereas it significantly inhibited Kv2.1 with an IC50 of 0.71 ± 0.01 µM. Mutagenesis and modeling data suggested that JZTX-III docks at the Kv2.1 voltage-sensor paddle. Alanine replacement of Phe274, Lys280, Ser281, Leu283, Gln284, and Val288 could decrease JZTX-III affinity by 7-, 9-, 34-, 12-, 9-, and 7-fold, respectively. Among them, S281 is the most crucial determinant, and the substitution with Thr only slightly reduced toxin sensitivity. In contrast, a single conversion of Ser281 to Ala, Phe, Ile, Val, or Glu increased the IC50 value by >34-fold. Alanine-scanning mutagenesis experiments indicated that the functional surface of JZTX-III bound to the Kv2.1 channel is composed of four hydrophobic residues (Trp8, Trp28, Trp30, and Val33) and three charged residues (Arg13, Lys15, and Glu34). The bioactive surfaces of JZTX-III interacting with Kv2.1 and Nav1.5 are only partially overlapping. These results strongly supported the hypothesis that animal toxins might use partially overlapping bioactive surfaces to target the voltage-sensor paddles of two different types of ion channels. Increasing our understanding of the molecular mechanisms of toxins interacting with voltage-gated sodium and potassium channels may provide new molecular insights into the design of more potent ion channel inhibitors.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Oocitos/efectos de los fármacos , Péptidos/farmacología , Canales de Potasio Shab/metabolismo , Venenos de Araña/farmacología , Secuencia de Aminoácidos , Animales , Electrofisiología , Femenino , Activación del Canal Iónico/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/química , Canal de Sodio Activado por Voltaje NAV1.5/genética , Oocitos/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Canales de Potasio Shab/química , Canales de Potasio Shab/genética , Arañas/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA