Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Biodivers ; : e202401567, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117598

RESUMEN

Four new norlignans, noralashinols D-F (1a/b-3), and two known analogues (4 and 5) were isolated from the peeled stems of Syringa pinnatifolia Hemsl. The structures were elucidated by analysis of spectroscopic data, such as IR, HR-ESI-MS, 1D and 2D NMR, and ECD. All compounds were evaluated for anti-inflammatory activities against NO production induced by LPS in BV2 microglia cells. Compounds 1b and 2 exhibited moderate activities with IC50 values of 32.39±9.1 and 47.83±10.44 µM, respectively, compared with positive control indomethacin (IC50=21.62 µM). It is worth to note that 1, 3, and 4 have a distinctive woody fragrance.

2.
Environ Res ; 237(Pt 1): 116913, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597830

RESUMEN

Dissolved organic matter (DOM) derived from wetland plants played a critical role in CWs pollutant migration. This study investigated the character and release pattern of DOM derived from two wetland plants, Phragmites australis and Cladophora sp., and the interaction between DOM with phenanthrene (PHE), benzo(a)pyrene (Bap), and benzo [k]fluoranthene (BkF) under different physical conditions were also studied using spectroscopic techniques. DOM release was related to plant species and withering stage. Humic acid (HA)-like fractions (C3 and C5) were dominated in P. australis (52%) and completely withered Cladophora sp. groups (55%), while protein-like fractions (C1 and C2) dominated in early withered Cladophora sp. groups (52%). Due to the cell and tissue structure difference among plants and their withering stage, DOM derived from early withered P. australis revealed a two-stage slow-fast phase, while other groups were linearly released (R2 0.87207-0.97091). A strong correlation existed between HA-like fractions and water quality index, reflecting the critical influence of plant decay in CWs operation performance. The analysis with Stern-Volmer equation indicated that plant-based DOM interacted with PAHs to form ground state complexes with possible involvement of π-π interaction, hydrogen bonding and cation bridging effect. Aromatic, molecular weight, and hydrophilicity of both DOM and PAHs affected their binding with the interaction capability in the order of BKF > Bap > PHE and C3 > C5 > C2 > C1 > C4. Besides, alkaline environment and high DO condition was highly unsuitable for the combination. Scientific management and appropriate operating condition were important in optimizing operation performance and controlling pollutant migration in CWs.

3.
Mol Ther ; 30(4): 1597-1609, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35121112

RESUMEN

Long non-coding RNA HOX Transcript Antisense RNA (HOTAIR) is overexpressed in multiple cancers with diverse genetic profiles. Importantly, since HOTAIR heavily contributes to cancer progression by promoting tumor growth and metastasis, HOTAIR becomes a potential target for cancer therapy. However, the underlying mechanism leading to HOTAIR deregulation is largely unexplored. Here, we performed a pan-cancer analysis using more than 4,200 samples and found that intragenic exon CpG island (Ex-CGI) was hypermethylated and was positively correlated to HOTAIR expression. Also, we revealed that Ex-CGI methylation promotes HOTAIR expression through enhancing the transcription elongation process. Furthermore, we linked up the aberrant intragenic tri-methylation on H3 at lysine 4 (H3K4me3) and Ex-CGI DNA methylation in promoting transcription elongation of HOTAIR. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis downregulated HOTAIR expression and inhibited cell growth in many cancers. To our knowledge, this is the first time that a positive feedback loop that involved CDK9-mediated phosphorylation of RNA Polymerase II Serine 2 (RNA PolII Ser2), H3K4me3, and intragenic DNA methylation, which induced robust transcriptional elongation and heavily contributed to the upregulation of oncogenic lncRNA in cancer has been demonstrated. Targeting the oncogenic CDK7-CDK9-H3K4me3 axis could be a novel therapy in many cancers through inhibiting the HOTAIR expression.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina , Histonas , Neoplasias , ARN Polimerasa III , ARN Largo no Codificante , Línea Celular Tumoral , Quinasa 9 Dependiente de la Ciclina/metabolismo , Metilación de ADN , Retroalimentación Fisiológica/fisiología , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Polimerasa III/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
4.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887237

RESUMEN

Drought and salinity have become major environmental problems that affect the production of agriculture, forestry and horticulture. The identification of stress-tolerant genes from plants adaptive to harsh environments might be a feasible strategy for plant genetic improvement to address the challenges brought by global climate changes. In this study, a dehydration-upregulated gene MfWRKY7 of resurrection Plant Myrothamnusflabellifolia, encoding a group IId WRKY transcription factor, was cloned and characterized. The overexpression of MfWRKY7 in Arabidopsis increased root length and tolerance to drought and NaCl at both seedling and adult stages. Further investigation indicated that MfWRKY7 transgenic plants had higher contents of chlorophyll, proline, soluble protein, and soluble sugar but a lower water loss rate and malondialdehyde content compared with wild-type plants under both drought and salinity stresses. Moreover, the higher activities of antioxidant enzymes and lower accumulation of O2- and H2O2 in MfWRKY7 transgenic plants were also found, indicating enhanced antioxidation capacity by MfWRKY7. These findings showed that MfWRKY7 may function in positive regulation of responses to drought and salinity stresses, and therefore, it has potential application value in genetic improvement of plant tolerance to abiotic stress.


Asunto(s)
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Cloruro de Sodio/metabolismo , Estrés Fisiológico/genética
5.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35897721

RESUMEN

WRKY transcription factors (TFs), one of the largest transcription factor families in plants, play an important role in abiotic stress responses. The resurrection plant, Myrothamnus flabellifolia, has a strong tolerance to dehydration, but only a few WRKY proteins related to abiotic stress response have been identified and functionally characterized in M. flabellifolia. In this study, we identified an early dehydration-induced gene, MfWRKY40, of M. flabellifolia. The deduced MfWRKY40 protein has a conserved WRKY motif but lacks a typical zinc finger motif in the WRKY domain and is localized in the nucleus. To investigate its potential roles in abiotic stresses, we overexpressed MfWRKY40 in Arabidopsis and found that transgenic lines exhibited better tolerance to both drought and salt stresses. Further detailed analysis indicated that MfWRKY40 promoted primary root length elongation and reduced water loss rate and stomata aperture (width/length) under stress, which may provide Arabidopsis the better water uptake and retention abilities. MfWRKY40 also facilitated osmotic adjustment under drought and salt stresses by accumulating more osmolytes, such as proline, soluble sugar, and soluble protein. Additionally, the antioxidation ability of transgenic lines was also significantly enhanced, represented by higher chlorophyll content, less malondialdehyde and reactive oxygen species accumulations, as well as higher antioxidation enzyme activities. All these results indicated that MfWRKY40 might positively regulate tolerance to drought and salinity stresses. Further investigation on the relationship of the missing zinc finger motif of MfWRKY40 and its regulatory role is necessary to obtain a better understanding of the mechanism underlying the excellent drought tolerance of M. flabellifolia.


Asunto(s)
Arabidopsis , Craterostigma , Arabidopsis/metabolismo , Craterostigma/genética , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Salino , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo
6.
BMC Genomics ; 21(1): 242, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32183717

RESUMEN

BACKGROUND: The fall webworm Hyphantria cunea is an invasive and polyphagous defoliator pest that feeds on nearly any type of deciduous tree worldwide. The silk web of H. cunea aids its aggregating behavior, provides thermal regulation and is regarded as one of causes for its rapid spread. In addition, both chemosensory and detoxification genes are vital for host adaptation in insects. RESULTS: Here, a high-quality genome of H. cunea was obtained. Silk-web-related genes were identified from the genome, and successful silencing of the silk protein gene HcunFib-H resulted in a significant decrease in silk web shelter production. The CAFE analysis showed that some chemosensory and detoxification gene families, such as CSPs, CCEs, GSTs and UGTs, were expanded. A transcriptome analysis using the newly sequenced H. cunea genome showed that most chemosensory genes were specifically expressed in the antennae, while most detoxification genes were highly expressed during the feeding peak. Moreover, we found that many nutrient-related genes and one detoxification gene, HcunP450 (CYP306A1), were under significant positive selection, suggesting a crucial role of these genes in host adaptation in H. cunea. At the metagenomic level, several microbial communities in H. cunea gut and their metabolic pathways might be beneficial to H. cunea for nutrient metabolism and detoxification, and might also contribute to its host adaptation. CONCLUSIONS: These findings explain the host and environmental adaptations of H. cunea at the genetic level and provide partial evidence for the cause of its rapid invasion and potential gene targets for innovative pest management strategies.


Asunto(s)
Adaptación Fisiológica/genética , Especies Introducidas , Mariposas Nocturnas/clasificación , Mariposas Nocturnas/genética , Animales , Secuencia de Bases , Perfilación de la Expresión Génica , Genoma , Filogenia
7.
BMC Plant Biol ; 20(1): 542, 2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33267774

RESUMEN

BACKGROUND: The basic helix-loop-helix (bHLH) proteins, a large transcription factors family, are involved in plant growth and development, and defensive response to various environmental stresses. The resurrection plant Myrothamnus flabellifolia is known for its extremely strong drought tolerance, but few bHLHs taking part in abiotic stress response have been unveiled in M. flabellifolia. RESULTS: In the present research, we cloned and characterized a dehydration-inducible gene, MfbHLH38, from M. flabellifolia. The MfbHLH38 protein is localized in the nucleus, where it may act as a transcription factor. Heterologous expression of MfbHLH38 in Arabidopsis improved the tolerance to drought and salinity stresses, as determined by the studies on physiological indexes, such as contents of chlorophyll, malondialdehyde (MDA), proline (Pro), soluble protein, and soluble sugar, water loss rate of detached leaves, reactive oxygen species (ROS) accumulation, as well as antioxidant enzyme activities. Besides, MfbHLH38 overexpression increased the sensitivity of stomatal closure to mannitol and abscisic acid (ABA), improved ABA level under drought stress, and elevated the expression of genes associated with ABA biosynthesis and ABA responding, sucha as NCED3, P5CS, and RD29A. CONCLUSIONS: Our results presented evidence that MfbHLH38 enhanced tolerance to drought and salinity stresses in Arabidopsis through increasing water retention ability, regulating osmotic balance, decreasing stress-induced oxidation damage, and possibly participated in ABA-dependent stress-responding pathway.


Asunto(s)
Aclimatación/genética , Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Magnoliopsida/genética , Proteínas de Plantas/fisiología , Tolerancia a la Sal/genética , Ácido Abscísico/metabolismo , Antioxidantes/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Núcleo Celular/fisiología , Clonación Molecular , ADN de Plantas , Sequías , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/fisiología , Proteínas de Plantas/genética , Estomas de Plantas/fisiología , Análisis de Secuencia de ADN
8.
Nanotechnology ; 31(50): 505207, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-32736372

RESUMEN

LED light bulbs that simulate solar spectrum were fabricated using CdSe core-shell quantum dots in combination with GaN blue-light chips. They exhibited excellent optical properties such as white CIE coordinates of (0.33, 0.33), high color rendering index (CRI) of 98 and correlated color temperature (CCT) of 5352 K. Moreover, a circuit system was used to control the LEDs so that the lighting spectrum changes with the time in a day to simulate the actual solar spectrum. The results show that the sun-like spectrum smart bulbs not only have good optical properties and high electrical stability, but also can automatically adjust their spectrum according to the time, making the lighting natural. This work makes sun-like lighting conditions for some special environments to promote the application of smart bulbs in smart lighting.

9.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344614

RESUMEN

Phytochrome-interacting factors (PIFs), a subfamily of basic helix-loop-helix (bHLH) transcription factors (TFs), play critical roles in regulating plant growth and development. The resurrection plant Myrothamnus flabellifolia possesses a noteworthy tolerance to desiccation, but no PIFs related to the response to abiotic stress have been functionally studied. In this study, a dehydration-inducible PIF gene, MfPIF1, was cloned and characterized. Subcellular localization assay revealed that MfPIF1 is localized predominantly in the nucleus. Overexpression of MfPIF1 in Arabidopsis thaliana led to enhanced drought and salinity tolerance, which was attributed to higher contents of chlorophyll, proline (Pro), soluble protein, and soluble sugar, activities of antioxidant enzymes as well as lower water loss rate, malondialdehyde (MDA) content, and reactive oxygen species (ROS) accumulation in transgenic lines compared with control plants. Moreover, MfPIF1 decreased stomatal aperture after drought and abscisic acid (ABA) treatment, and increased expression of both ABA biosynthesis and ABA-responsive genes including NCED3, P5CS, and RD29A. Overall, these results indicated that MfPIF1 may act as a positive regulator to drought and salinity responses, and therefore could be considered as a potential gene for plant genetic improvement of drought and salinity tolerance.


Asunto(s)
Arabidopsis/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Salinidad , Estrés Fisiológico , Tracheophyta/genética , Secuencia de Aminoácidos , Antioxidantes/metabolismo , Clonación Molecular , Craterostigma/genética , Fitocromo/metabolismo , Proteínas de Plantas/química , Transporte de Proteínas , Tolerancia a la Sal
10.
Molecules ; 25(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937894

RESUMEN

Citrus blend black teas are popular worldwide, due to its unique flavor and remarkable health benefits. However, the aroma characteristics, aroma profiles and key odorants of it remain to be distinguished and cognized. In this study, the aroma profiles of 12 representative samples with three different cultivars including citrus (Citrus reticulata), bergamot (Citrus bergamia), and lemon (Citrus limon) were determined by a novel approach combined head space-solid phase microextraction (HS-SPME) with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). A total of 348 volatile compounds, among which comprised esters (60), alkenes (55), aldehydes (45), ketones (45), alcohols (37), aromatic hydrocarbons (20), and some others were ultimately identified. The further partial least squares discrimination analysis (PLS-DA) certified obvious differences existed among the three groups with a screening result of 30 significant differential key volatile compounds. A total of 61 aroma-active compounds that mostly presented green, fresh, fruity, and sweet odors were determined in three groups with gas chromatography-olfactometry/mass spectrometry (GC-O/MS) assisted analysis. Heptanal, limonene, linalool, and trans-ß-ionone were considered the fundamental odorants associated with the flavors of these teas. Comprehensive analysis showed that limonene, ethyl octanoate, copaene, ethyl butyrate (citrus), benzyl acetate, nerol (bergamot) and furfural (lemon) were determined as the characterized odorants for each type.


Asunto(s)
Citrus/química , Odorantes/análisis , Té/química , Monoterpenos Acíclicos/metabolismo , Compuestos de Bencilo/química , Butiratos/química , Caprilatos/química , Furaldehído/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Análisis de los Mínimos Cuadrados , Limoneno/química , Olfatometría , Sesquiterpenos/química , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA