Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(5): 878-894.e19, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32059783

RESUMEN

Pathogenic autoantibodies arise in many autoimmune diseases, but it is not understood how the cells making them evade immune checkpoints. Here, single-cell multi-omics analysis demonstrates a shared mechanism with lymphoid malignancy in the formation of public rheumatoid factor autoantibodies responsible for mixed cryoglobulinemic vasculitis. By combining single-cell DNA and RNA sequencing with serum antibody peptide sequencing and antibody synthesis, rare circulating B lymphocytes making pathogenic autoantibodies were found to comprise clonal trees accumulating mutations. Lymphoma driver mutations in genes regulating B cell proliferation and V(D)J mutation (CARD11, TNFAIP3, CCND3, ID3, BTG2, and KLHL6) were present in rogue B cells producing the pathogenic autoantibody. Antibody V(D)J mutations conferred pathogenicity by causing the antigen-bound autoantibodies to undergo phase transition to insoluble aggregates at lower temperatures. These results reveal a pre-neoplastic stage in human lymphomagenesis and a cascade of somatic mutations leading to an iconic pathogenic autoantibody.


Asunto(s)
Autoanticuerpos/genética , Enfermedades Autoinmunes/genética , Linfocitos B/inmunología , Linfoma/genética , Animales , Autoanticuerpos/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Linfocitos B/patología , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Portadoras/genética , Evolución Clonal/genética , Evolución Clonal/inmunología , Ciclina D3/genética , Guanilato Ciclasa/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Proteínas Inhibidoras de la Diferenciación/genética , Linfoma/inmunología , Linfoma/patología , Ratones , Mutación/genética , Mutación/inmunología , Proteínas de Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Proteínas Supresoras de Tumor/genética , Recombinación V(D)J/genética
2.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848464

RESUMEN

Histone monoaminylation (i.e., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.

3.
Ann Rheum Dis ; 81(5): 644-652, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35144926

RESUMEN

OBJECTIVE: To comparatively analyse the aberrant affinity maturation of the antinuclear and rheumatoid factor (RF) B cell repertoires in blood and tissues of patients with Sjögren's syndrome (SjS) using an integrated omics workflow. METHODS: Peptide sequencing of anti-Ro60, anti-Ro52, anti-La and RF was combined with B cell repertoire analysis at the DNA, RNA and single cell level in blood B cell subsets, affected salivary gland and extranodal marginal zone lymphomas of mucosa-associated lymphoid tissue (MALT) of patients with SjS. RESULTS: Affected tissues contained anti-Ro60, anti-Ro52, anti-La and RF clones as a small part of a polyclonal infiltrate. Anti-Ro60, anti-La and anti-Ro52 clones outnumbered RF clones. MALT lymphoma tissues contained monoclonal RF expansions. Autoreactive clones were not selected from a restricted repertoire in a circulating B cell subset. The antinuclear antibody (ANA) repertoires displayed similar antigen-dependent and immunoglobulin (Ig) G1-directed affinity maturation. RF clones displayed antigen-dependent, IgM-directed and more B cell receptor integrity-dependent affinity maturation. This coincided with extensive intra-clonal diversification in RF-derived lymphomas. Regeneration of clinical disease manifestations after rituximab coincided with large RF clones, which not necessarily belonged to the lymphoma clone, that displayed continuous affinity maturation and intra-clonal diversification. CONCLUSION: The ANA and RF repertoires in patients with SjS display tissue-restricted, antigen-dependent and divergent affinity maturation. Affinity maturation of RF clones deviates further during RF clone derived lymphomagenesis and during regeneration of the autoreactive repertoire after temporary disruption by rituximab. These data give insight into the molecular mechanisms of autoreactive inflammation in SjS, assist MALT lymphoma diagnosis and allow tracking its response to rituximab.


Asunto(s)
Linfoma de Células B de la Zona Marginal , Proteogenómica , Síndrome de Sjögren , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Inmunoglobulina G/inmunología , Factor Reumatoide/metabolismo , Rituximab/uso terapéutico , Síndrome de Sjögren/inmunología
4.
Eur J Immunol ; 46(10): 2444-2453, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27461134

RESUMEN

The frequencies, immunophenotype, and function of mucosal-associated invariant T (MAIT) cells were studied in patients with primary Sjögren syndrome (pSS) and healthy controls. MAIT cells were significantly decreased in the peripheral blood (PB) of patients with pSS. Vα7.2+ MAIT cells were detected in the salivary gland tissue from pSS patients, but not in controls, indicating that the reduction of MAIT cells in PB might be due to migration into the target tissue. Furthermore, the residual peripheral blood MAIT cells in pSS patients showed altered immunophenotype and function. While MAIT cells from controls were almost exclusively CD8+ and expressed an effector memory immunophenotype, in pSS patients they were enriched in CD4+ and naïve subpopulations. Consistently, the functional studies demonstrated that MAIT cells from pSS showed a lower level of activation with reduced expression of CD69 and CD154 (CD40L), and a lower production of TNF and IFN-γ. In summary, our findings demonstrate that MAIT cells were reduced and phenotypically and functionally altered in PB of pSS patients. The altered function of MAIT cells in target tissues from pSS patients may result in dysregulation of mucosal immunity leading to microbial damage of mucosal surfaces and subsequent initiation of autoimmune response.


Asunto(s)
Células Sanguíneas/inmunología , Diferenciación Celular , Células T Asesinas Naturales/inmunología , Síndrome de Sjögren/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Proliferación Celular , Estudios de Cohortes , Femenino , Humanos , Inmunidad Mucosa , Memoria Inmunológica , Interferón gamma/metabolismo , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Clin Immunol ; 173: 57-63, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27609500

RESUMEN

We have used high-resolution mass spectrometry to sequence precipitating anti-Ro60 proteomes from sera of patients with primary Sjögren's syndrome and compare immunoglobulin variable-region (IgV) peptide signatures in Ro/La autoantibody subsets. Anti-Ro60 were purified by elution from native Ro60-coated ELISA plates and subjected to combined de novo amino acid sequencing and database matching. Monospecific anti-Ro60 Igs comprised dominant public and minor private sets of IgG1 kappa and lambda restricted heavy and light chains. Specific IgV amino acid substitutions stratified anti-Ro60 from anti-Ro60/La responses, providing a molecular fingerprint of Ro60/La determinant spreading and suggesting that different forms of Ro60 antigen drive these responses. Sequencing of linked anti-Ro52 proteomes from individual patients and comparison with their anti-Ro60 partners revealed sharing of a dominant IGHV3-23/IGKV3-20 paired clonotype but with divergent IgV mutational signatures. In summary, anti-Ro60 IgV peptide mapping provides insights into Ro/La autoantibody diversification and reveals serum-based molecular markers of humoral Ro60 autoimmunity.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Región Variable de Inmunoglobulina/inmunología , ARN Citoplasmático Pequeño/inmunología , Ribonucleoproteínas/inmunología , Síndrome de Sjögren/inmunología , Autoanticuerpos/sangre , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Mapeo Peptídico , Proteoma , Síndrome de Sjögren/sangre
6.
Cancer Lett ; : 217110, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986733

RESUMEN

PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line. Gene set enrichment analysis (GSEA) of the RNA-sequencing data revealed significant enrichment of the epithelial-mesenchymal transition (EMT) pathway, with SNAI2 (the gene encoding Slug) emerging as one of the top candidates. Our findings demonstrate that PP2A B55α suppresses EMT, as PPP2R2A deficiency through knockdown or homozygous or hemizygous depletion promotes EMT and metastatic behavior in NSCLC cells, as evidenced by changes in EMT biomarkers, invasion and migration abilities, as well as metastasis in a tail vein assay. Mechanistically, PP2A B55α inhibits EMT by downregulating SNAI2 expression via the GSK3ß-ß-catenin pathway. Importantly, PPP2R2A deficiency also slows cell proliferation by disrupting DNA replication, particularly in PPP2R2A-/- cells. Furthermore, PPP2R2A deficiency, especially PPP2R2A-/- cells, leads to an increase in the cancer stem cell population, which correlates with enhanced resistance to chemotherapy. Overall, the decrease in PP2A B55α levels due to hemizygous/homozygous depletion heightens EMT and the metastatic or stemness/drug resistance potential of NSCLC cells despite their proliferation disadvantage. Our study highlights the significance of PP2A B55α in EMT and metastasis and suggests that targeting EMT/stemness could be a potential therapeutic strategy for treating PPP2R2A-deficient NSCLC.

7.
bioRxiv ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38562869

RESUMEN

Histone monoaminylation ( i . e ., serotonylation and dopaminylation) is an emerging category of epigenetic mark occurring on the fifth glutamine (Q5) residue of H3 N-terminal tail, which plays significant roles in gene transcription. Current analysis of histone monoaminylation is mainly based on site-specific antibodies and mass spectrometry, which either lacks high resolution or is time-consuming. In this study, we report the development of chemical probes for bioorthogonal labeling and enrichment of histone serotonylation and dopaminylation. These probes were successfully applied for the monoaminylation analysis of in vitro biochemical assays, cells, and tissue samples. The enrichment of monoaminylated histones by the probes further confirmed the crosstalk between H3Q5 monoaminylation and H3K4 methylation. Finally, combining the ex vivo and in vitro analyses based on the developed probes, we have shown that both histone serotonylation and dopaminylation are highly enriched in tumor tissues that overexpress transglutaminase 2 (TGM2) and regulate the three-dimensional architecture of cellular chromatin.

8.
J Toxicol Environ Health A ; 76(14): 874-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24053364

RESUMEN

The aim of this study was to investigate the adverse effects produced by four types of iron (Fe) ore dust using cultured human cells. Genotoxicity and cytotoxicity induced by Fe ore dusts were determined by assays including cytokinesis block micronucleus (CBMN), population growth, and methyl tetrazolium (MTT). Four iron ore dusts were tested, namely, 1002 Limonite & Goethite (1002), HG2 hematite (HG2), HG1 Soutlem Pit (HG1), and HG4. WIL2 -NS cells were incubated for 10 h with extracts from a range of concentrations (0, 75, or 150 µg/ml) of Fe ore dust. Significant decreases in percent cell viability were seen at 150 µg/ml HG2 and 1002 as measured by MTT, with viability that decreased to 75 and 73%, respectively, compared to untreated controls. The cell population regrew to a different extent after Fe ore dust was removed, except for HG1, where population remained declined. An approximately twofold significant increase in the frequency of micronucleated binucleated cells (MNBNC) was seen with 1002, HG2, and HG1 at 150 µg/ml. A significant rise in apoptosis induction was observed at 150 µg/ml HG1. Data indicate that Fe ore dusts at 150 µg/ml produced cytotoxicity and genotoxicity.


Asunto(s)
Polvo , Compuestos de Hierro/toxicidad , Linfocitos/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinesis/efectos de los fármacos , Formazáns/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Linfocitos/metabolismo , Linfocitos/patología , Pruebas de Micronúcleos , Oxidantes/toxicidad , Sales de Tetrazolio/metabolismo
9.
Cancer Res Commun ; 3(11): 2412-2419, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37888903

RESUMEN

The cGAS/STING cytosolic DNA-sensing pathway plays a significant role in antitumor immunity. Expression of STING is tightly regulated and commonly reduced or defective in many types of cancer. We have identified SIX4 as a significant regulator of STING expression in colon cancer cells. We showed that knockout of SIX4 decreased STING expression at the mRNA and protein levels while ectopic expression of SIX4 increased STING expression. Depletion of SIX4 led to attenuated STING activation and downstream signaling. Reexpression of SIX4 or ectopic expression of STING in SIX4 knockout cells reversed the effect. Ectopic expression of SIX4 enhanced DMXAA and cGAMP-induced STING activation and downstream signaling. Importantly, decrease of SIX4 expression substantially decreased tumor infiltration of CD8+ T cells and reduced the efficacy of PD-1 antibodies to diminish tumor growth in immune competent mice in vivo. Finally, analysis of The Cancer Genome Atlas colon cancer dataset indicated that tumors with high SIX4 expression were significantly enriched in the Inflammatory Response pathway. SIX4 expression also correlated with expression of multiple IFN-stimulated genes, inflammatory cytokines, and CD8A. Taken together, our results implicate that SIX4 is a principal regulator of STING expression in colon cancer cells, providing an additional mechanism and genetic marker to predict effective immune checkpoint blockade therapy responses. SIGNIFICANCE: Our studies demonstrate that SIX4 is an important regulator of STING expression, providing a genetic marker or a therapeutic target to predict or enhance immune checkpoint blockade therapy responses in colon cancer.


Asunto(s)
Neoplasias del Colon , Inhibidores de Puntos de Control Inmunológico , Ratones , Animales , Marcadores Genéticos , Transducción de Señal , Citocinas , Neoplasias del Colon/genética
10.
Biology (Basel) ; 12(12)2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38132362

RESUMEN

miRNAs moderately inhibit the translation and enhance the degradation of their target mRNAs via cognate binding sites located predominantly in the 3'-untranslated regions (UTR). Paradoxically, miRNA targets are also polysome-associated. We studied the polysome association by the comparative translationally less-active light- and more-active heavy-polysome profiling of a wild type (WT) human cell line and its isogenic mutant (MT) with a disrupted DICER1 gene and, thus, mature miRNA production. As expected, the open reading frame (ORF) length is a major determinant of light- to heavy-polysome mRNA abundance ratios, but is rendered less powerful in WT than in MT cells by miRNA-regulatory activities. We also observed that miRNAs tend to target mRNAs with longer ORFs, and that adjusting the mRNA abundance ratio with the ORF length improves its correlation with the 3'-UTR miRNA-binding-site count. In WT cells, miRNA-targeted mRNAs exhibit higher abundance in light relative to heavy polysomes, i.e., light-polysome enrichment. In MT cells, the DICER1 disruption not only significantly abrogated the light-polysome enrichment, but also narrowed the mRNA abundance ratio value range. Additionally, the abrogation of the enrichment due to the DICER1 gene disruption, i.e., the decreases of the ORF-length-adjusted mRNA abundance ratio from WT to MT cells, exhibits a nearly perfect linear correlation with the 3'-UTR binding-site count. Transcription factors and protein kinases are the top two most enriched mRNA groups. Taken together, the results provide evidence for the light-polysome enrichment of miRNA-targeted mRNAs to reconcile polysome association and moderate translation inhibition, and that ORF length is an important, though currently under-appreciated, transcriptome regulation parameter.

11.
EBioMedicine ; 92: 104574, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37148585

RESUMEN

BACKGROUND: The SARS-CoV-2 global pandemic has fuelled the generation of vaccines at an unprecedented pace and scale. However, many challenges remain, including: the emergence of vaccine-resistant mutant viruses, vaccine stability during storage and transport, waning vaccine-induced immunity, and concerns about infrequent adverse events associated with existing vaccines. METHODS: We report on a protein subunit vaccine comprising the receptor-binding domain (RBD) of the ancestral SARS-CoV-2 spike protein, dimerised with an immunoglobulin IgG1 Fc domain. These were tested in conjunction with three different adjuvants: a TLR2 agonist R4-Pam2Cys, an NKT cell agonist glycolipid α-Galactosylceramide, or MF59® squalene oil-in-water adjuvant, using mice, rats and hamsters. We also developed an RBD-human IgG1 Fc vaccine with an RBD sequence of the immuno-evasive beta variant (N501Y, E484K, K417N). These vaccines were also tested as a heterologous third dose booster in mice, following priming with whole spike vaccine. FINDINGS: Each formulation of the RBD-Fc vaccines drove strong neutralising antibody (nAb) responses and provided durable and highly protective immunity against lower and upper airway infection in mouse models of COVID-19. The 'beta variant' RBD vaccine, combined with MF59® adjuvant, induced strong protection in mice against the beta strain as well as the ancestral strain. Furthermore, when used as a heterologous third dose booster, the RBD-Fc vaccines combined with MF59® increased titres of nAb against other variants including alpha, delta, delta+, gamma, lambda, mu, and omicron BA.1, BA.2 and BA.5. INTERPRETATION: These results demonstrated that an RBD-Fc protein subunit/MF59® adjuvanted vaccine can induce high levels of broadly reactive nAbs, including when used as a booster following prior immunisation of mice with whole ancestral-strain spike vaccines. This vaccine platform offers a potential approach to augment some of the currently approved vaccines in the face of emerging variants of concern, and it has now entered a phase I clinical trial. FUNDING: This work was supported by grants from the Medical Research Future Fund (MRFF) (2005846), The Jack Ma Foundation, National Health and Medical Research Council of Australia (NHMRC; 1113293) and Singapore National Medical Research Council (MOH-COVID19RF-003). Individual researchers were supported by an NHMRC Senior Principal Research Fellowship (1117766), NHMRC Investigator Awards (2008913 and 1173871), Australian Research Council Discovery Early Career Research Award (ARC DECRA; DE210100705) and philanthropic awards from IFM investors and the A2 Milk Company.


Asunto(s)
COVID-19 , Proteínas Portadoras , Cricetinae , Humanos , Ratones , Ratas , Animales , Vacunas contra la COVID-19 , SARS-CoV-2 , Subunidades de Proteína , COVID-19/prevención & control , Australia , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Anticuerpos Antivirales
12.
J Surg Oncol ; 105(3): 261-5, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22375288

RESUMEN

BACKGROUND AND OBJECTIVES: To determine the rate and the risk factors for sinonasal-cutaneous fistula formation after treatment for sinonasal malignancy. METHODS: Between 1991 and 2002, 99 patients with advanced sinonasal malignancy received radiation therapy +/- surgery. Primary site was maxillary sinus in 30, ethmoid sinus in 19, nasal cavity in 32, nasopharynx in 3, and sphenoid sinus in 15 patients. Eighty-two percent of patients had T4 disease. Sixty-eight percent of patients had undergone surgical resection. Median follow-up was 70.6 months. RESULTS: Eight patients developed ≥ grade 3 sinonasal-cutaneous fistulas at a median time of 3.8 months after radiation. The overall rates of developing ≥ grade 3 fistulas in the entire group at 2 and 5 years were 6% and 10%, respectively. The fistulas were in the medial canthus in seven patients and in the infraorbital region in one patient. Fistulas developed exclusively along the transfacial incision scar and in patients whose tumors extended to the subcutaneous tissues. In univariate analysis, squamous cell carcinoma histology (P » 0.008), ≤ T4a primary tumor category (P » 0.02), and transfacial incision (P » 0.02) were associated with increased risk of fistula formation. CONCLUSIONS: Histologic subtype, T category, and quality of the skin and the underlying supporting tissues after transfacial incision are risk factors for sinonasal-cutaneous fistula formation.


Asunto(s)
Fístula Cutánea/etiología , Fístula/etiología , Enfermedades de los Senos Paranasales/etiología , Neoplasias de los Senos Paranasales/terapia , Complicaciones Posoperatorias , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma/patología , Carcinoma/terapia , Quimioterapia Adyuvante , Cisplatino/administración & dosificación , Etopósido/administración & dosificación , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Cavidad Nasal/cirugía , Tumores Neuroectodérmicos/patología , Tumores Neuroectodérmicos/terapia , Neoplasias de los Senos Paranasales/patología , Senos Paranasales/cirugía , Radioterapia/efectos adversos , Radioterapia Adyuvante , Estudios Retrospectivos , Factores de Riesgo , Sarcoma/patología , Sarcoma/terapia , Adulto Joven
13.
J Clin Med ; 11(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159987

RESUMEN

Primary Sjögren's syndrome (SjS) is an inflammatory autoimmune disorder which targets the lacrimal and salivary glands, resulting in glandular dysfunction. Currently, the immune drivers of SjS remain poorly understood and peripheral biomarkers of disease are lacking. The present study therefore sought to investigate the immune cell constituents of the SjS peripheral blood, and to assess the role of the BTLA/HVEM/CD160 co-stimulatory network by characterizing expression within the periphery. Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood of n = 10 patients with SjS and n = 10 age- and sex-matched healthy control donors. Cells were divided and stained with three panels of antibodies, allowing assessment of T, B, and myeloid cell subsets, and measurement of BTLA, HVEM, and CD160 surface expression by flow cytometry. We identified distinct alterations in proportions of peripheral T, B, and myeloid cell types in SjS compared with healthy controls. Expression of BTLA/CD160/HVEM and frequency of BTLA/CD160/HVEM-expressing cells were significantly altered in peripheral SjS lymphocytes. The proportion of T cells co-expressing BTLA/HVEM and CD160/HVEM were significantly reduced in SjS. We found decreased BTLA and HVEM levels on peripheral B and T cells of SjS patients, and decreased BTLA/HVEM and CD160/HVEM co-expression, demonstrating dysregulation of the BTLA/HVEM axis in the peripheral blood of SjS patients. These results indicate the potential of targeting the BTLA-HVEM axis for the treatment of SjS.

14.
Nat Commun ; 12(1): 1162, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608522

RESUMEN

The durability of infection-induced SARS-CoV-2 immunity has major implications for reinfection and vaccine development. Here, we show a comprehensive profile of antibody, B cell and T cell dynamics over time in a cohort of patients who have recovered from mild-moderate COVID-19. Binding and neutralising antibody responses, together with individual serum clonotypes, decay over the first 4 months post-infection. A similar decline in Spike-specific CD4+ and circulating T follicular helper frequencies occurs. By contrast, S-specific IgG+ memory B cells consistently accumulate over time, eventually comprising a substantial fraction of circulating the memory B cell pool. Modelling of the concomitant immune kinetics predicts maintenance of serological neutralising activity above a titre of 1:40 in 50% of convalescent participants to 74 days, although there is probably additive protection from B cell and T cell immunity. This study indicates that SARS-CoV-2 immunity after infection might be transiently protective at a population level. Therefore, SARS-CoV-2 vaccines might require greater immunogenicity and durability than natural infection to drive long-term protection.


Asunto(s)
Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , COVID-19/inmunología , Inmunidad Celular , Memoria Inmunológica , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Inmunoglobulina G/inmunología , Estudios Longitudinales , Modelos Teóricos , Pruebas de Neutralización , Linfocitos T Colaboradores-Inductores/inmunología
15.
Vaccine ; 38(8): 2077-2087, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31718902

RESUMEN

Clostridioides difficile infection is the leading cause of nosocomial diarrhoea globally. Immune responses to toxins produced by C. difficile are important in disease progression and outcome. Here, we analysed the anti-toxin A and anti-toxin B serum antibody proteomes following natural infection or vaccination with a C. difficile toxoid A/toxoid B vaccine using a modified miniaturised proteomic approach based on de novo mass spectrometric sequencing. Analysis of immunoglobulin variable region (IgV) subfamily expression in immunoprecipitated toxin A and toxin B antibodies from four and seven participants of a vaccine trial, respectively, revealed a polyclonal proteome with restricted IGHV, IGKV and IGLV subfamily usage. No dominant IGHV subfamily was observed in the toxin A response, however the dominant anti-toxin B heavy (H)-chain was encoded by IGHV3-23. Light (L)-chain usage was convergent for both anti-toxin A and anti-toxin B proteomes with IGKV3-11, 3-15, 3-20 and 4-1 shared among all subjects in both cohorts. Peptide mapping of common IgV families showed extensive public and private amino acid substitutions. The cohort responses to toxin A and toxin B showed limited similarity in shared IGHV subfamilies. L-chain subfamily usage was more similar in the anti-toxin A and anti-toxin B responses, however the mutational signatures for each subfamily were toxin-dependent. Samples taken both post vaccination (n = 5) or at baseline, indicating previous exposure (n = 2), showed similar anti-toxin B IgV subfamily usage and mutational profiles. In summary, this study provides the first sequence-based proteomic analysis of the antibody response to the major disease-mediating toxins of C. difficile, toxin A and toxin B, and demonstrates that despite the potential for extreme diversity, the immunoglobulin repertoire can raise convergent responses to specific pathogens whether through natural infection or following vaccination.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Toxinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Clostridioides difficile , Infecciones por Clostridium , Sustitución de Aminoácidos , Infecciones por Clostridium/prevención & control , Humanos , Región Variable de Inmunoglobulina , Mapeo Peptídico , Proteoma/inmunología
16.
Arthritis Rheumatol ; 70(10): 1617-1625, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29697211

RESUMEN

OBJECTIVE: Rheumatoid factors (RFs) are associated with systemic disease in primary Sjögren's syndrome (SS) and may be pathogenic as mixed cryoglobulins. Current detection methods cannot resolve RFs at a molecular level. This study was undertaken to perform the first proteomic and transcriptomic analysis of secreted and membrane-bound IgM-RF in primary SS and identify unique heavy-chain peptide signatures for RF clonotype tracking. METHODS: Purified heavy chains of serum RFs from 15 patients with primary SS were subjected to de novo mass spectrometric sequencing. The circulating B cell Ig repertoire was determined by massively parallel sequencing of IGH RNA from matched peripheral blood mononuclear cells (n = 7). RF-specific heavy-chain third complementarity-determining region (CDR3) peptides were identified by searching RF heavy-chain peptide sequences against the corresponding IGH RNA sequence libraries. Heavy-chain CDR3 peptides were used as biomarkers to track serum RF clonotypes using quantitative multiple reaction monitoring. RESULTS: Serum RFs were clonally restricted and composed of shared sets of IgM heavy-chain variable region (Ig VH ) 1-69, 3-15, 3-7, and 3-74 subfamilies. Cryoprecipitable RFs from patients with mixed cryoglobulinemia (MC) were distinguishable from nonprecipitating RFs by a higher frequency of amino acid substitutions and identification of stereotypic heavy-chain CDR3 transcripts. Potentially pathogenic RF clonotypes were detected in serum by multiple reaction monitoring years before patients presented with MC. Levels of Ig VH 4-34 IgM-RF decreased following immunosuppression and remission of MC. CONCLUSION: Cryoprecipitable RF clonotypes linked to vasculitis in primary SS have different molecular profiles than nonprecipitating RFs, suggesting different underlying mechanisms of production. The combined omics workflow presented herein provides molecular biomarkers for tracking and removal of pathogenic RF clones.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/sangre , Leucocitos Mononucleares/fisiología , Factor Reumatoide/sangre , Síndrome de Sjögren/sangre , Adulto , Linfocitos B/metabolismo , Compuestos de Boro/metabolismo , Rastreo Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Cadenas Pesadas de Inmunoglobulina/inmunología , Inmunoglobulina M/inmunología , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Proteómica , Factor Reumatoide/inmunología , Síndrome de Sjögren/inmunología
17.
Environ Mol Mutagen ; 48(2): 151-7, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17285640

RESUMEN

Respirable crystalline silica has been classified as a human lung carcinogen. Ultrafine (diameter < 100 nm) silica particles may be important in carcinogenesis, although the mechanisms remain unclear. In the present study, WIL2-NS cells were incubated for 6, 24, and 48 hr with 0, 30, 60, and 120 microg/ml ultrafine crystalline SiO(2) (UF-SiO(2)). The cytotoxic and genotoxic effects caused by UF-SiO(2) in cultured human cells were investigated via a set of bioassays. Significant dose- dependent decreases in percent cell viability were seen with increasing dose of UF-SiO(2) in the methyl tetrazolium assay. Significant decreases were seen at 120 microg/ml (58, 38, and 57% for 6, 24, and 48-hr exposure, respectively). During 4 days growth in the flasks, there was a slight recovery observed after washing off UF-SiO(2) as measured by the population growth assay. Significant dose-dependent reduction in the cytokinesis block proliferation index was observed by the cytokinesis block micronucleus assay. Treatment with 120 microg/ml UF-SiO(2) for 24 hr produced a fourfold increase in the frequency of micronucleated binucleated cells (MNBNC). The increase in MNBNC was dose-dependent. The lowest dose that gave a statistically significant increase in MNBNC was 30 microg/ml (24-hr treatment), which had cytotoxicity of less than 10%. There was no significant difference in DNA strand breakage as measured by the Comet assay. A significant increase in induced mutant frequency was found at 120 microg/ml as detected by the hypoxanthine guanine phosphoribosyltransferase mutation assay. The results indicate that UF-SiO(2) is cytotoxic and genotoxic in cultured human cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Dióxido de Silicio/toxicidad , Apoptosis/fisiología , Supervivencia Celular/efectos de los fármacos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Material Particulado , Dióxido de Silicio/química , Siliconas , Células Tumorales Cultivadas
18.
Mutat Res ; 628(2): 99-106, 2007 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-17223607

RESUMEN

Titanium dioxide is frequently used in the production of paints, paper, plastics, welding rod-coating material, and cosmetics, because of its low toxicity. However, recent studies have shown that nano-sized or ultrafine TiO(2) (UF-TiO(2)) (<100 nm in diameter) can generate pulmonary fibrosis and lung tumor in rats. Cytotoxicity induced by UF-TiO(2) in rat lung alveolar macrophages was also observed. This generates great concern about the possible adverse effects of UF-TiO(2) for humans. The cytotoxicity and genotoxicity of UF-TiO(2) were investigated using the methyl tetrazolium cytotoxicity (MTT) assay, the population growth assay, the apoptosis assay by flow cytometry, the cytokinesis block micronucleus (CBMN) assay, the comet assay, and the hypoxanthine-guanine phosphoribosyltransferase (HPRT) gene mutation assay. WIL2-NS cells were incubated for 6, 24 and 48 h with 0, 26, 65 and 130 microg/ml UF-TiO(2). Significant decreases in viability were seen in the MTT assay at higher doses; for example, 61, 7 and 2% relative viability at 130 microg/ml for 6, 24 and 48-h exposure (P<0.01). A dose-dependent relationship was observed, while a time-dependent relationship was seen only at the highest dose (130 microg/ml) after exposure for 24 and 48 h. Treatment with 130 microg/ml UF-TiO(2) induced approximately 2.5-fold increases in the frequency of micronucleated binucleated cells (P<0.01). In addition, a significant reduction in the cytokinesis block proliferation index was observed by the CBMN assay (P<0.05). In the comet assay, treatment with 65 microg/ml UF-TiO(2) induced approximately 5-fold increases in olive tail moment (P<0.05). In the HPRT mutation assay, treatment with 130 microg/ml UF-TiO(2) induced approximately 2.5-fold increases in the mutation frequency (P<0.05). The results of this study indicate that UF-TiO(2) can cause genotoxicity and cytotoxicity in cultured human cells.


Asunto(s)
Linfocitos/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Titanio/toxicidad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Daño del ADN , Humanos
19.
Toxicol Mech Methods ; 17(4): 223-32, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-20020972

RESUMEN

ABSTRACT Respirable quartz is a potential human lung carcinogen. The mechanisms involved in this carcinogenesis, however, remain unclear, especially for the ultrafine particles (diameter <100 nm). The aim of the present study was to investigate the effects caused by ultrafine quartz (UF-quartz) in a human cell culture model. Genotoxicity and cytotoxicity induced by UF-quartz were investigated through the cytokinesis block micronucleus assay (CBMN), the Comet assay, the HPRT assay, the population growth assay, and the 3-(4, 5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. WIL2-NS cells were incubated for 10h with 0, 60, and 120 mug/mL UF-quartz. Significant decreases in percent of cell survival in the MTT assay were seen at higher doses, for example, 83%, and 64% relative survival at 60 mug/mL and 120 mug/mL, respectively. Only slight population regrowth was observed, with the population sizes recovering slightly by day 4 after quartz particles were removed. A significant increase in the frequency of micronucleated binucleated cells (MNed BNCs) was seen with 120 mug/mL quartz, from approximately 5 in 1000 BNCs in controls to 12 in 1000 BNCs. A significant reduction in the nuclear division index was observed by the CBMN assay, indicating inhibition of cell division by high-dose UF-quartz. A dose-dependent increase in induced HPRT-gene locus mutant frequency with increasing dose of UF-quartz was observed by the HPRT assay. No significant difference was found in DNA strand breakage as detected by the Comet assay. Collective findings suggest that UF-quartz can cause cytotoxicity and genotoxicity to human lymphoblasts in this model system.

20.
Front Pharmacol ; 8: 284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28634450

RESUMEN

Objective: Advanced age is associated with impaired angiogenesis in part because of mitochondrial dysfunction. We have recently reported that leonurine exerts protective effects in neuron via regulation of mitochondrial function. The aim of this study was to explore whether leonurine is able to attenuate mitochondrial dysfunction and to enhance angiogenesis in old rats with hindlimb ischemia. Methods and Results: At day 14 after surgery, hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) expression was decreased in the ischemic muscle of aged animals, which was accompanied by enhanced oxidative stress, increased mitochondrial damage, decreased capillary density, and reduced limb perfusion compared with young mice. Importantly, these effects were inhibited by leonurine treatment in old animals. In vitro, we showed that the functional activities (migration and tube formation) of human umbilical vein endothelial cells (HUVECs) were significantly impaired in senescent compared to young. However, leonurine rescued HUVECs functional activities in senescent HUVECs. Mechanistically, we found that leonurine restored the age-dependent reduction in HIF activity and subsequent reduced VEGF expression in senescent HUVECs. Moreover, the mitochondrial oxidative stress was significantly augmented in senescent HUVECs, in association with reduced mitochondrial function. However, leonurine significantly reduced the mitochondrial oxidative stress and restored the mitochondrial membrane potential. Conclusion: Our results demonstrate that leonurine protects against age-dependent impairment of angiogenesis possibly through attenuation of mitochondrial dysfunction and subsequent VEGF up-regulation impairment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA