Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
FASEB J ; 37(5): e22927, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37086087

RESUMEN

miR-184 is one of the most abundant miRNAs expressed in the lens and corneal tissue. Mutations in the seed region of miR-184 are responsible for inherited anterior segment dysgenesis. Animal models recapitulating miR-184-related anterior segment dysgenesis are still lacking, and the molecular basis of ocular abnormalities caused by miR-184 dysfunction has not been well elucidated in vivo. In the present study, we constructed a miR-184-/- zebrafish line by destroying both two dre-mir-184 paralogs with CRISPR-Cas9 technology. Although there were no gross developmental defects, the miR-184-/- zebrafish displayed microphthalmia and cataract phenotypes. Cytoskeletal abnormalities, aggregation of γ-crystallin, and lens fibrosis were induced in miR-184-/- lenses. However, no obvious corneal abnormalities were observed in miR-184-/- zebrafish. Instead of apoptosis, deficiency of miR-184 led to aberrant cell proliferation and a robust increase in p21 levels in zebrafish eyes. Inhibition of p21 by UC2288 compromised the elevation of lens fibrosis markers in miR-184-/- lenses. RNA-seq demonstrated that levels of four transcriptional factors HSF4, Sox9a, CTCF, and Smad6a, all of which could suppress p21 expression, were reduced in miR-184-/- eyes. The predicted zebrafish miR-184 direct target genes (e.g., atp1a3a and nck2a) were identified and verified in miR-184-/- eye tissues. The miR-184-/- zebrafish is the first animal model mimicking miR-184-related anterior segment dysgenesis and could broaden our understanding of the roles of miR-184 in eye development.


Asunto(s)
Catarata , Cristalino , MicroARNs , Animales , Catarata/genética , Catarata/metabolismo , Cristalino/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/genética
2.
Biochim Biophys Acta Gen Subj ; 1864(3): 129496, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31786107

RESUMEN

BACKGROUND: Germline mutations in heat shock factor 4 (HSF4) cause congenital cataracts. Previously, we have shown that HSF4 is involved in regulating lysosomal pH in mouse lens epithelial cell in vitro. However, the underlying mechanism remains unclear. METHODS: HSF4-deficient mouse lens epithelial cell lines and zebrafish were used in this study. Immunoblotting and quantitative RT-PCR were used for expression analysis. The protein-protein interactions were tested with GST-pull downs. The lysosomes were fractioned by ultracentrifugation. RESULTS: HSF4 deficiency or knock down of αB-crystallin elevates lysosomal pH and increases the ubiquitination and degradation of ATP6V1A by the proteasome. αB-crystallin localizes partially in the lysosome and interacts solely with the ATP6V1A protein of the V1 complex of V-ATPase. Furthermore, αB-crystallin can co-precipitate with mTORC1 and ATP6V1A in GST pull down assays. Inhibition of mTORC1 by rapamycin or siRNA can lead to dissociation of αB-crystallin from the ATP6V1A and mTORC1complex, shortening the half-life of ATP6V1A and increasing the lysosomal pH. Mutation of ATP6V1A/S441A (the predicted mTOR phosphorylation site) reduces its association with αB-crystallin. In the zebrafish model, HSF4 deficiency reduces αB-crystallin expression and elevates the lysosomal pH in lens tissues. CONCLUSION: HSF4 regulates lysosomal acidification by controlling the association of αB-crystallin with ATP6V1A and mTOR and regulating ATP6V1A protein stabilization. GENERAL SIGNIFICANCE: This study uncovers a novel function of αB-crystallin, demonstrating that αB-crystallin can regulate lysosomal ATP6V1A protein stabilization by complexing to ATP6V1A and mTOR. This highlights a novel mechanism by which HSF4 regulates the proteolytic process of organelles during lens development.


Asunto(s)
Factores de Transcripción del Choque Térmico/metabolismo , Lisosomas/metabolismo , Cadena B de alfa-Cristalina/metabolismo , Animales , Línea Celular , Cristalinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/metabolismo , Factores de Transcripción del Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Humanos , Cristalino/metabolismo , Lisosomas/fisiología , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación , ATPasas de Translocación de Protón Vacuolares/metabolismo , Pez Cebra/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165724, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32061775

RESUMEN

Removal of nuclei in lens fiber cells is required for organelle-free zone (OFZ) formation during lens development. Defect in degradation of nuclear DNA leads to cataract formation. DNase2ß degrades nuclear DNA of lens fiber cells during lens differentiation in mouse. Hsf4 is the principal heat shock transcription factor in lens and facilitates the lens differentiation. Knockout of Hsf4 in mouse and zebrafish resulted in lens developmental defect that was characterized by retaining of nuclei in lens fiber cells. In previous in vitro studies, we found that Hsf4 promoted DNase2ß expression in human and mouse lens epithelial cells. In this study, it was found that, instead of DNase2ß, DNase1l1l is uniquely expressed in zebrafish lens and was absent in Hsf4-/- zebrafish lens. Using CRISPR-Cas9 technology, a DNase1l1l knockout zebrafish line was constructed, which developed cataract. Deletion of DNase1l1l totally abrogated lens primary and secondary fiber cell denucleation process, whereas had little effect on the clearance of other organelles. The transcriptional regulation of DNase1l1l was dramatically impaired in Hsf4-/- zebrafish lens. Rescue of DNase1l1l mRNA into Hsf4-/- zebrafish embryos alleviated its defect in lens fiber cell denucleation. Our results in vivo demonstrated that DNase1l1l is the primary DNase responsible for nuclear DNA degradation in lens fiber cells, and Hsf4 can transcriptionally activate DNase1l1l expression in zebrafish.


Asunto(s)
Catarata/genética , Desoxirribonucleasas/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Choque Térmico/metabolismo , Cristalino/embriología , Proteínas de Pez Cebra/genética , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas/genética , Catarata/patología , Núcleo Celular/metabolismo , Desoxirribonucleasas/metabolismo , Modelos Animales de Enfermedad , Embrión no Mamífero , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Técnicas de Inactivación de Genes , Factores de Transcripción del Choque Térmico/genética , Humanos , Cristalino/citología , Cristalino/metabolismo , Cristalino/patología , Masculino , Pez Cebra , Proteínas de Pez Cebra/metabolismo
4.
Gene ; 707: 86-92, 2019 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-31071385

RESUMEN

Retinitis pigmentosa (RP) is the most common form of inherited retinal degenerative diseases. X-linked RP accounts for nearly 15% of all RP cases. In this study, we identified a novel RP2 missense mutation Q158P in a Chinese XLRP family. The RP2 Q158P mutation located in the RP2 TBCC domain and obviously destabilized RP2 protein in ARPE-19 cells. The proteasome inhibitor MG132 could restore the RP2 Q158P protein levels. Meanwhile, lower doses of bortezomib and carfilzomib, another two proteasome inhibitors that have been approved in multiple myeloma clinical therapy, also could rescue the RP2 Q158P protein levels. The ubiquitination of RP2 Q158P protein obviously increased when compared with wild type RP2 protein. Our findings broadened the spectrum of RP2 mutations and may contribute a better understanding of the molecular mechanism of XLRP.


Asunto(s)
Proteínas del Ojo/química , Proteínas del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación Missense , Retinitis Pigmentosa/genética , Línea Celular , China , Análisis Mutacional de ADN , Femenino , Proteínas de Unión al GTP , Humanos , Masculino , Modelos Moleculares , Linaje , Dominios Proteicos , Estabilidad Proteica , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA