Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Mater ; 23(6): 854-862, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38448659

RESUMEN

Thrombosis is a leading global cause of death, in part due to the low efficacy of thrombolytic therapy. Here, we describe a method for precise delivery and accurate dosing of tissue plasminogen activator (tPA) using an intelligent DNA nanodevice. We use DNA origami to integrate DNA nanosheets with predesigned tPA binding sites and thrombin-responsive DNA fasteners. The fastener is an interlocking DNA triplex structure that acts as a thrombin recognizer, threshold controller and opening switch. When loaded with tPA and intravenously administrated in vivo, these DNA nanodevices rapidly target the site of thrombosis, track the circulating microemboli and expose the active tPA only when the concentration of thrombin exceeds a threshold. We demonstrate their improved therapeutic efficacy in ischaemic stroke and pulmonary embolism models, supporting the potential of these nanodevices to provide accurate tPA dosing for the treatment of different thromboses.


Asunto(s)
ADN , Terapia Trombolítica , Activador de Tejido Plasminógeno , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/uso terapéutico , ADN/química , Animales , Terapia Trombolítica/métodos , Nanoestructuras/química , Trombosis/tratamiento farmacológico , Ratones , Fibrinolíticos/administración & dosificación , Fibrinolíticos/química , Fibrinolíticos/uso terapéutico , Humanos
2.
Nat Mater ; 23(7): 993-1001, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38594486

RESUMEN

DNA origami is capable of spatially organizing molecules into sophisticated geometric patterns with nanometric precision. Here we describe a reconfigurable, two-dimensional DNA origami with geometrically patterned CD95 ligands that regulates immune cell signalling to alleviate rheumatoid arthritis. In response to pH changes, the device reversibly transforms from a closed to an open configuration, displaying a hexagonal pattern of CD95 ligands with ~10 nm intermolecular spacing, precisely mirroring the spatial arrangement of CD95 receptor clusters on the surface of immune cells. In a collagen-induced arthritis mouse model, DNA origami elicits robust and selective activation of CD95 death-inducing signalling in activated immune cells located in inflamed synovial tissues. Such localized immune tolerance ameliorates joint damage with no noticeable side effects. This device allows for the precise spatial control of cellular signalling, expanding our understanding of ligand-receptor interactions and is a promising platform for the development of pharmacological interventions targeting these interactions.


Asunto(s)
Artritis Reumatoide , ADN , Tolerancia Inmunológica , Transducción de Señal , Receptor fas , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Animales , ADN/química , ADN/inmunología , Ratones , Receptor fas/metabolismo , Receptor fas/inmunología , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/inmunología , Humanos
3.
Nano Lett ; 24(22): 6480-6487, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771966

RESUMEN

The metal plasmonic nanostructure has the optical property of plasmon resonance, which holds great potential for development in nanophotonics, bioelectronics, and molecular detection. However, developing a general and straightforward method to prepare metal plasmonic nanostructures with a controllable size and morphology still poses a challenge. Herein, we proposed a synthesis strategy that utilized a customizable self-assembly template for shape-directed growth of metal structures. We employed gold nanoparticles (AuNPs) as connectors and DNA nanotubes as branches, customizing gold nanoparticle-DNA origami composite nanostructures with different branches by adjusting the assembly ratio between the connectors and branches. Subsequently, various morphologies of plasmonic metal nanostructures were created using this template shape guided strategy, which exhibited enhancement of surface-enhanced Raman scattering (SERS) signals. This strategy provides a new approach for synthesizing metallic nanostructures with multiple morphologies and opens up another possibility for the development of customizable metallic plasmonic structures with broader applications.


Asunto(s)
ADN , Oro , Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , ADN/química , Resonancia por Plasmón de Superficie , Espectrometría Raman , Nanotecnología/métodos , Tamaño de la Partícula , Nanoestructuras/química , Propiedades de Superficie
4.
Nano Lett ; 24(25): 7764-7773, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38864366

RESUMEN

Inducing immunogenic cell death (ICD) during photothermal therapy (PTT) has the potential to effectively trigger photothermal immunotherapy (PTI). However, ICD induced by PTT alone is often limited by inefficient PTT, low immunogenicity of tumor cells, and a dysregulated redox microenvironment. Herein, we develop MoSe2 nanosheets with high-percentage metallic 1T phase and rich exposed active Mo centers through phase and defect engineering of MoSe2 as an effective nanoagent for PTI. The metallic 1T phase in MoSe2 nanosheets endows them with strong PTT performance, and the abundant exposed active Mo centers endow them with high activity for glutathione (GSH) depletion. The MoSe2-mediated high-performance PTT synergizing with efficient GSH depletion facilitates the release of tumor-associated antigens to induce robust ICD, thus significantly enhancing checkpoint blockade immunotherapy and activating systemic immune response in mouse models of colorectal cancer and triple-negative metastatic breast cancer.


Asunto(s)
Inmunoterapia , Molibdeno , Terapia Fototérmica , Animales , Ratones , Inmunoterapia/métodos , Humanos , Molibdeno/química , Femenino , Línea Celular Tumoral , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Glutatión/química , Glutatión/metabolismo , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Muerte Celular Inmunogénica/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Rayos Infrarrojos , Selenio/química , Selenio/uso terapéutico , Fototerapia/métodos
5.
J Am Chem Soc ; 146(9): 6317-6325, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391280

RESUMEN

Repetitive sequences, which make up over 50% of human DNA, have diverse applications in disease diagnosis, forensic identification, paternity testing, and population genetic analysis due to their crucial functions for gene regulation. However, representative detection technologies such as sequencing and fluorescence imaging suffer from time-consuming protocols, high cost, and inaccuracy of the position and order of repetitive sequences. Here, we develop a precise and cost-effective strategy that combines the high resolution of atomic force microscopy with the shape customizability of DNA origami for repetitive sequence-specific gene localization. "Tri-block" DNA structures were specifically designed to connect repetitive sequences to DNA origami tags, thereby revealing precise genetic information in terms of position and sequence for high-resolution and high-precision visualization of repetitive sequences. More importantly, we achieved the results of simultaneous detection of different DNA repetitive sequences on the gene template with a resolution of ∼6.5 nm (19 nt). This strategy is characterized by high efficiency, high precision, low operational complexity, and low labor/time costs, providing a powerful complement to sequencing technologies for gene localization of repetitive sequences.


Asunto(s)
ADN , Secuencias Repetitivas de Ácidos Nucleicos , Humanos , ADN/genética , ADN/química , Mapeo Cromosómico , Microscopía de Fuerza Atómica/métodos , Conformación de Ácido Nucleico , Nanotecnología/métodos
6.
Anal Chem ; 96(13): 5178-5187, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38500378

RESUMEN

Accurate, ultrasensitive, and point-of-care (POC) diagnosis of the African swine fever virus (ASFV) remains imperative to prevent its spread and limit the losses incurred. Herein, we propose a CRISPR-Cas12a-assisted triplex amplified colorimetric assay for ASFV DNA detection with ultrahigh sensitivity and specificity. The specific recognition of recombinase aided amplification (RAA)-amplified ASFV DNA could activate the Cas12a/crRNA/ASFV DNA complex, leading to the digestion of the linker DNA (bio-L1) on magnetic beads (MBs), thereby preventing its binding of gold nanoparticles (AuNPs) network. After magnetic separation, the release of AuNPs network comprising a substantial quantity of AuNPs could lead to a discernible alteration in color and significantly amplify the plasmonic signal, which could be read by spectrophotometers or smartphones. By combining the RAA, CRISPR/Cas12a-assisted cleavage, and AuNPs network-mediated colorimetric amplification together, the assay could detect as low as 0.1 copies/µL ASFV DNA within 1 h. The assay showed an accuracy of 100% for the detection of ASFV DNA in 16 swine tissue fluid samples, demonstrating its potential for on-site diagnosis of ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana , Nanopartículas del Metal , Animales , Porcinos , Virus de la Fiebre Porcina Africana/genética , Sistemas CRISPR-Cas/genética , Oro , Sistemas de Atención de Punto , Hidrolasas , Recombinasas , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico
7.
Small ; : e2308562, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441369

RESUMEN

Diagnosis and treatment of tumor especially drug-resistant tumor remains a huge challenge, which requires intelligent nanomedicines with low toxic side effects and high efficacy. Herein, deformable smart DNA nanomachines are developed for synergistic intracellular cancer-related miRNAs imaging and chemo-gene therapy of drug-resistant tumors. The tetrahedral DNA framework (MA-TDNA) with fluorescence quenched component and five antennas is self-assembled first, and then DOX molecules are loaded on the MA-TDNAs followed by linking MUC1-aptamer and Mcl-1 siRNA to the antennas of MA-TDNA, so that the apt-MA-TDNA@DOX-siRNA (DNA nanomachines) is constructed. The DNA nanomachine can respond to two tumor-related miRNAs in vitro and in vivo, which can undergo intelligent miRNA-triggered opening of the framework, resulting in the "turn on" of the fluorescence for sensitively and specifically sensing intracellular miRNAs. Meanwhile, both miRNA-responded rapid release and pH-responded release of DOX are achieved for chemotherapy of tumor. In addition, the gene therapy of the DNA nanomachines is achieved due to the miRNA-specific capture and the RNase H triggered release of Mcl-1 siRNA. The DNA nanomachines intergrading both tumor imaging and chemo-gene therapy in single nanostructures realized efficient tumor-targeted, image-guided, and microenvironment-responsive tumor diagnosis and treatment, which provides a synergetic antitumor effect on drug-resistant tumor.

8.
Opt Express ; 32(8): 14276-14288, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859378

RESUMEN

Bound states in the continuum (BIC) represent distinct non-radiative states endowed with infinite lifetime and vanishing resonance linewidth. Introducing asymmetric perturbation to the system can convert true BICs into high quality leaky modes which is useful in many photonic applications. Previously, such perturbation and resonance of interest is only limited to a single factor. However, different perturbations by unit cell gap, geometry and rotation angle result distinctive resonance modes. The combination of two perturbation factors can excite multi-mode resonance contributed from each asymmetric factor which coexist simultaneously; thus, the number of reflectance peaks can be controlled. In addition, we have carefully analyzed the electric field variations under different perturbation factors, followed by a multipolar decomposition of resonances to reveal underlying mechanisms of distinct resonance modes. Through simulations, we find that the introduction of multiple asymmetric perturbations also influences the metasurface sensitivity in refractive index sensing and compare the performance of different resonance modes. These observations provide structural design insights for achieving high quality resonance with multiple modes and ultra-sensitive sensing.

9.
J Org Chem ; 89(13): 9450-9461, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38867507

RESUMEN

Visible-light-promoted thiolation of benzyl chlorides with thiosulfonates is disclosed via an electron donor-acceptor complex strategy. In addition to efficiently delivering a series of arylbenzylsulfide compounds, versatile thioglycosides were also successfully constructed by applying the metal- and photocatalyst-free protocol. Preliminary mechanistic studies suggest that a radical-radical coupling process was involved in this transformation.

10.
Sleep Breath ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012435

RESUMEN

PURPOSE: To continuously and dynamically monitor the sleep status of patients in the acute phase of cerebral infarction, and to investigate the characteristics of acute cerebral infarction(ACI)associated with sleep-disordered breathing (SDB), variations in sleep structure, and changes in sleep circadian rhythms. METHODS: Patients with ACI within 48 h of onset who were admitted to the Department of Neurology at Kailuan General Hospital from November 2020 to December 2022 were selected. Detailed baseline information such as age, gender, smoking history, drinking history, were recorded for the selected participants. From the beginning of their hospitalization, the selected participants were monitored for their sleep status continuously for 5 days using the Intelligent Mattress-based Sleep Monitoring Platform System(IMSMPS). Based on the heart rate data obtained from the monitoring, the interdaily stability (IS) and intradaily variability (IV) of the sleep circadian rhythm were calculated. RESULTS: 1,367 patients with ACI were selected. Monitoring results over 5 days indicated 147 cases (10.75%) without SDB, and 1,220 cases (89.25%) with SDB. Among the group with SDB, there were 248 cases (18.14%) with continuous mild SDB, 395 cases (28.90%) with moderate SDB, 295 cases (21.58%) with severe SDB, and 282 cases (20.63%) that fluctuated between different severity levels. Within this fluctuating group, 152 cases (53.90%) fluctuated between two severity levels, 120 cases (42.55%) between three levels, and 10 cases (3.55%) among all four levels. There were statistically significant differences (P < 0.05) in the sleep latency, sleep efficiency, non-rapid eye movement stages 1-2, rapid eye movement, proportion of non-rapid eye movement, proportion of rapid eye movement, wake after sleep onset, time out of bed, number of awakenings, respiratory variability index, and heart rate variability index among patients with ACI monitored from day 1 to 5. However, other monitored sleep structure parameters did not show statistically significant differences (P > 0.05). The coefficient of variation for all sleep monitoring parameters ranged between 14.54 and 36.57%. The IV in the SDB group was higher than in the group without SDB (P < 0.05), and the IS was lower than in the group without SDB (P < 0.05). CONCLUSION: Patients in the acute phase of cerebral infarction have a high probability of accompanying SDB. The sleep structure of these patients shows significant variability based on the onset time of the stroke, and some patients experience fluctuations among different severity levels of SDB. ACI accompanied by SDB can further reduce the IS of a patient's sleep circadian rhythm and increase its IV.

11.
Angew Chem Int Ed Engl ; 63(9): e202314583, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38196289

RESUMEN

Biointerfacing nanomaterials with cell membranes has been successful in the functionalization of nanoparticles or nanovesicles, but microbubble functionalization remains challenging due to the unique conformation of the lipid monolayer structure at the gas-liquid interface that provides insufficient surfactant activity. Here, we describe a strategy to rationally regulate the surfactant activity of platelet membrane vesicles by adjusting the ratio of proteins to lipids through fusion with synthetic phospholipids (i.e., liposomes). A "platesome" with the optimized protein-to-lipid ratio can be assembled at the gas-liquid interface in the same manner as pulmonary surfactants to stabilize a microsized gas bubble. Platesome microbubbles (PMBs) inherited 61.4 % of the platelet membrane vesicle proteins and maintained the active conformation of integrin αIIbß3 without the talin 1 for fibrin binding. We demonstrated that the PMBs had good stability, long circulation, and superior functionality both in vitro and in vivo. Moreover, by molecular ultrasound imaging, the PMBs provide up to 11.8 dB of ultrasound signal-to-noise ratio enhancement for discriminating between acute and chronic thrombi. This surface tension regulating strategy may provide a paradigm for biointerfacing microbubbles with cell membranes, offering a potential new approach for the construction of molecular ultrasound contrast agents for the diagnosis of different diseases.


Asunto(s)
Surfactantes Pulmonares , Trombosis , Humanos , Tensoactivos , Microburbujas , Fosfolípidos , Lipoproteínas , Medios de Contraste/química
12.
Anal Chem ; 95(30): 11440-11448, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37478154

RESUMEN

The development of noninvasive and sensitive detection methods for the early diagnosis and monitoring of bladder cancer is critical but challenging. Herein, an ultrasensitive electrochemiluminescence (ECL) immunosensor that uses Ru(bpy)32+-metal-organic framework (Ru-MOF) nanospheres and a DNA tetrahedral (TDN) probe was established for bladder cancer marker complement factor H-related protein (CFHR1) detection. The synthesized Ru(bpy)32+-metal-organic frameworks (Ru-MOFs) served as a linked substrate for immobilization of AuNPs and antibody (Ab2) to prepare the ECL signal probe (Ru-MOF@AuNPs-Ab2), exhibiting a stable and strengthened ECL emission. At the same time, the inherent advantages of TDN probes on the electrode as the capture probe (TDN-Ab1) improve the accessibility of targets to probes. In the presence of CFHR1, the signal probe Ru-MOF@AuNPs-Ab2 was modified on the electrode through immune binding, thereby obtaining an outstanding ECL signal. As expected, the developed ECL immunosensor exhibited splendid performance for CFHR1 detection in the range of 0.1 fg/mL to 10 pg/mL with a quite low detection limit of 0.069 fg/mL. By using the proposed strategy to detect CFHR1 from urine, it showed acceptable accuracy, which can effectively distinguish between bladder cancer patients and healthy samples. This work contributes to a novel, noninvasive, and accurate method for early clinical diagnosis of bladder cancer.

13.
Anal Chem ; 95(17): 6810-6817, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37075136

RESUMEN

Membrane protein dimerization regulates numerous cellular biological processes; therefore, highly sensitive and facile detection of membrane protein dimerization are very crucial for clinical diagnosis and biomedical research. Herein, a colorimetric detection of Met dimerization on live cells via smartphone for high-sensitivity sensing of the HGF/Met signaling pathway was developed for the first time. The Met monomers on live cells were recognized by specific ligands (aptamers) first, and the Met dimerizations triggered the proximity-ligation-assisted catalytic hairpin assembly (CHA) reaction to generate large amounts of G-quadruplex (G4) fragments which can further combine hemin to form G4/hemin DNAzymes possessing the horseradish-peroxidase-like catalytic activity for catalyzing the oxidation of ABTS by H2O2 and producing the colorimetric signal (i.e., color change). The colorimetric detection of Met on live cells was then achieved by image acquisition and processing via a smartphone. As a proof-of-principle, the HGF/Met signaling pathway based on Met-Met dimerization was facile monitored, and the human gastric cancer cells MKN-45 with natural Met-Met dimers were sensitively tested and a wide linear working range from 2 to 1000 cells with a low detection limit of 1 cell was obtained. The colorimetric assay possesses a good specificity and high recovery rate of MKN-45 cells spiked in peripheral blood, which indicates that the proposed colorimetric detection of Met dimerization can be used for convenient observation of the HGF/Met signaling pathway and has extensive application prospects in point-of-care testing (POCT) of Met-dimerization-related tumor cells.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , G-Cuádruplex , Humanos , Técnicas Biosensibles/métodos , Colorimetría/métodos , Dimerización , ADN Catalítico/metabolismo , Hemina/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Peróxido de Hidrógeno/metabolismo , Límite de Detección , Transducción de Señal , Teléfono Inteligente , Proteínas Proto-Oncogénicas c-met/metabolismo
14.
Small ; 19(36): e2302347, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37127862

RESUMEN

Reactive oxygen species (ROS)-mediated biological catalysis involves serial programmed enzymatic reactions and plays an important part against infectious diseases; while the spatiotemporal control of catalytic treatment to break the limitations of the disease microenvironment is challenging. Here, a novel spatiotemporal catalytic microneedles patch (CMSP-MNs) integrated with dual-effective Cu2 MoS4 (CMS) and polydopamine (PDA) nanoparticles (NPs) for breaking microenvironment restrictions to treat wound infections is designed. Since CMS NPs are loaded in the needles, CMSP-MNs can catalytically generate diverse ROS to cause effective bacterial inactivation during bacterial infection process. Besides, PDA NPs are encapsulated in the backing layer, which facilitate ROS elimination and oxygen production for solving hypoxic problems in wound microenvironment and alleviating the expression of inflammatory factors during the inflammation process. Based on these features, it is demonstrated through cell and animal experiments that these nanozymes-integrated MNs patches can realize selective regulation of ROS level with bacterial inactivation and inflammatory treatment, resulting in minimized side effects of over-production ROS and effective anti-infected treatment. It is believed that the presented MNs can provide a new therapeutic strategy with spatiotemporal adjustable catalytic properties in biomedical areas.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Animales , Agujas , Especies Reactivas de Oxígeno/metabolismo , Bacterias/metabolismo , Catálisis
15.
Nanotechnology ; 34(23)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36848663

RESUMEN

Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as metal organic framework, covalent organic framework, graphene, has accelerated the development of membranes, which benefits the precision of membrane structures. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.

16.
Angew Chem Int Ed Engl ; 62(7): e202216361, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36524465

RESUMEN

Herein, we report, for the first time, a unique stiffness-transformable manganese oxide hybridized mesoporous organosilica nanoplatform (MMON) for enhancing tumor therapeutic efficacy. The prepared MMONs had a quasi-spherical morphology and were completely transformed into soft bowl-like nanocapsules in the simulated tumor microenvironment through the breakage of Mn-O bonds, which decreased their Young's modulus from 165.7 to 84.5 MPa. Due to their unique stiffness transformation properties, the MMONs had reduced macrophage internalization, improved tumor cell uptake, and enhanced penetration of multicellular spheroids. In addition, in vivo experiments showed that the MMONs displayed a 3.79- and 2.90-fold decrease in non-specific liver distribution and a 2.87- and 1.83-fold increase in tumor accumulation compared to their soft and stiff counterparts, respectively. Furthermore, chlorin e6 (Ce6) modified MMONs had significantly improved photodynamic therapeutic effect.


Asunto(s)
Nanocápsulas , Nanopartículas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Microambiente Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Línea Celular Tumoral , Nanopartículas/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química
17.
Anal Chem ; 94(42): 14794-14800, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36215207

RESUMEN

Despite increasing recognition of extracellular vesicles being important circulating biomarkers in disease diagnosis and prognosis, current strategies for extracellular vesicle detection remain limited due to the compromised sample purification and extensive labeling procedures in complex body fluids. Here, we developed a 2D magnetic platform that greatly improves capture efficiency and readily realizes visible signal conversion for extracellular vesicle detection. The technology, termed high-affinity recognition and visual extracellular vesicle testing (HARVEST), leverages 2D flexible Fe3O4-MoS2 nanostructures to recognize extracellular vesicles through multidentate affinity binding and feasible magnetic separation, thus enhancing the extracellular vesicle capture performance with both yield and separation time, affording high sensitivity with the detection limit of 20 extracellular vesicle particles/µL. Through integration with lipid labeling chemistry and the fluorescence visualization system, the platform enables rapid and visible detection. The number of extracellular vesicles can be feasibly determined by smart mobile phones, readily adapted for point-of-care diagnosis. When clinically evaluated, the strategy accurately differentiates melanoma samples from the normal cohort with an AUC of 0.98, demonstrating the efficient extracellular vesicle detection strategy with 2D flexible platforms for cancer diagnosis.


Asunto(s)
Vesículas Extracelulares , Molibdeno , Humanos , Molibdeno/metabolismo , Biomimética , Vesículas Extracelulares/química , Biomarcadores/análisis , Lípidos/análisis
18.
Anal Chem ; 94(26): 9336-9344, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35728270

RESUMEN

Development of theranostic nanosystems integrating cascaded surface-enhanced Raman scattering (SERS) imaging and gene silencing therapy for accurate cancer diagnosis and treatment is still a big challenge and rarely reported. Herein, a novel Au nanoparticles (AuNPs)-based theranostic nanosystem containing AuNP-Ys and AuNP-Ds for highly sensitive and specific cancer diagnosis and treatment was proposed for cascaded SERS imaging of intracellular cancer-related miR-106a and miR-106a-triggered DNAzyme-based dual gene-silencing therapy of cancer cells. The AuNP-Ys were prepared by modifying the AuNPs with specially designed Y-motifs, and the AuNP-Ds were obtained by colabeling Raman molecules and dsDNA linkers on AuNPs. When identifying the intracellular cancer-related miRNAs, the Y-motifs and dsDNA linkers undergoes miRNA-triggered ATP-driven conformational transitions and releases the miRNA for recycling, which results in the formation of AuNP network nanostructures to generate significantly enhanced SERS signals for sensitive identification of the cancer cells as well as the amplification and specific activation of DNAzymes to catalyze the Mg2+-assisted cleavage of the Survivin and c-Jun mRNAs for effective dual gene-silencing therapy of cancer cells. The AuNP-based theranostic nanosystem achieves the synergism of target-triggered SERS imaging and DNAzyme-based dual gene-silencing therapy with enhanced specificity, sensitivity, and curative effect, which can be a powerful tool for accurate diagnosis and efficient treatment of cancers.


Asunto(s)
ADN Catalítico , Nanopartículas del Metal , MicroARNs , Neoplasias , ADN Catalítico/genética , Silenciador del Gen , Oro/química , Nanopartículas del Metal/química , MicroARNs/genética , Neoplasias/diagnóstico por imagen , Neoplasias/genética , Neoplasias/terapia , Espectrometría Raman/métodos
19.
Small ; 18(22): e2200824, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35523735

RESUMEN

Constructing high-order DNA nano-architectures in large sizes is of critical significance for the application of DNA nanotechnology. Robust and flexible design strategies together with easy protocols to construct high-order large-size DNA nano-architectures remain highly desirable. In this work, the authors report a simple and versatile one-pot strategy to fabricate DNA architectures with the assistance of spherical gold nanoparticles modified with thiolated oligonucleotide strands (SH-DNA-AuNPs), which serve as "power strips" to connect various DNA nanostructures carrying complementary ssDNA strands as "plugs". By modulating the plug numbers and positions on each DNA nanostructure and the ratios between DNA nanostructures and AuNPs, the desired architectures are formed via the stochastic co-assembly of different modules. This SH-DNA-AuNP-mediated plug-in assembly (SAMPA) strategy offers new opportunities to drive macroscopic self-assembly to meet the demand of the fabrication of well-defined nanomaterials and nanodevices.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , ADN/química , Oro/química , Nanopartículas del Metal/química , Nanoestructuras/química , Nanotecnología/métodos
20.
Langmuir ; 38(5): 1791-1796, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35084864

RESUMEN

The simple and accurate determination of pathogenic infectious diseases is very beneficial to public health prevention and control. For this purpose, we designed a colorimetric sensor for label-free avian influenza A (H7N9) virus gene sequence detection based on gold@platinum core-shell bimetallic-nanoparticle-decorated molybdenum disulfide (MoS2-Au@Pt) nanocomposites. MoS2-Au@Pt nanocomposites were used as nanoenzymes to catalyze 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide (H2O2) because of their intrinsic peroxidase-mimicking activity. Coupled with different affinities of MoS2-Au@Pt nanocomposites toward single-stranded (ss) and double-stranded (ds) DNA and the target-triggered catalyzed hairpin assembly (CHA) reaction, the proposed sensor can qualitatively and quantitatively determine H7N9 by the naked eye. Experimental results showed that this sensor can detect H7N9 in buffer and real samples because of its high sensitivity, selectivity, and repeatability.


Asunto(s)
Enfermedades Transmisibles , Subtipo H7N9 del Virus de la Influenza A , Catálisis , Colorimetría/métodos , Disulfuros , Oro , Humanos , Peróxido de Hidrógeno/análisis , Límite de Detección , Molibdeno , Peroxidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA