Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097751

RESUMEN

BACKGROUND: Cyanidin-3-O-glucoside (C3G), is an anthocyanin mainly found in berries, and can also be produced by microorganisms. It has been traditionally used as a natural coloring agent for decades. Recently, it has been investigated for its high antioxidant activity and anti-cancer attributes. C3G has low bioavailability and is sensitive to oxidation and gastric pH; therefore, it is encapsulated in nanoliposomes to enhance its bio-availability, targeted delivery- and efficacy against chronic disease. SCOPE AND APPROACH: In this review, the role of C3G nanoliposomes against major chronic diseases has been discussed. The focus was on research findings and the mechanism of action to affect the proliferation of cancer, neuro disease and cardiovascular problems. It also discussed the formulation of nanoliposomes, their role in nutraceutical delivery and enhancement in C3G bioavailability. KEY FINDINGS AND CONCLUSIONS: Data suggested that nanoliposomes safeguard C3G, enhance bioavailability, and ensure safe, adequate and targeted delivery. It can reduce the impact of cancer and inflammation by inhibiting the ß-catenin/O6-methylguanine-DNA methyltransferase (MGMT) pathway and upregulating miR-214-5p. Formation of C3G nanoliposomes significantly enhances the nutraceutical efficacy of C3G against major chronic disease therefore, C3G nanoliposomes might be a future-based nutraceutical to treat major chronic diseases, including cancer, neuro problems and CVD, but challenges remain in finding correct dose and techniques to maximize its efficacy.

2.
Biology (Basel) ; 13(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39194579

RESUMEN

Modulating gut microbiota composition through probiotic administration has been proposed as a novel therapy for type 2 diabetes mellitus (T2DM), and fermented milk is arguably the most common and ideal probiotic carrier. The present meta-analysis was performed to assess the effects of probiotic fermented milk supplementation on glucose and lipid metabolism parameters and inflammatory markers in patients with T2DM using published data from randomized controlled trials (RCTs). The PubMed, Web of Science, and Cochrane Library databases were searched for relevant RCTs. A random-effects model was used to generate the weighted mean difference (WMD) and 95% confidence interval (95% CI). Probiotic fermented milk supplementation reduced the levels of fasting plasma glucose (MD = -17.01, 95% CI -26.43, -7.58 mg/dL; n = 7), hemoglobin A1c (MD = -0.47, 95% CI -0.74, -0.21%; n = 7), total cholesterol (MD = -5.15, 95% CI -9.52, -0.78 mg/dL; n = 7), and C-reactive protein (MD = -0.25, 95% CI -0.43, -0.08; n = 3) but did not significantly affect the levels of HOMA-IR (MD = -0.89, 95% CI -2.55, 0.78; n = 3), triglyceride (MD = -4.69, 95% CI -14.67, 5.30 mg/dL; n = 6), low-density lipoprotein cholesterol (MD = -4.25, 95% CI -8.63, 0.13 mg/dL; n = 7), high-density lipoprotein cholesterol (MD = 1.20, 95% CI -0.96, 3.36 mg/dL; n = 7), and tumor necrosis factor-alpha (MD: -0.58, 95% CI -1.47, 0.32 pg/mL; n = 2). In summary, the present findings provide a crude indication of the potential benefits of probiotic fermented milk supplementation in improving glucose and lipid metabolism and inflammation in patients with T2DM. However, more robust evidence is needed to determine the clinical significance of probiotic fermented milk in the management of T2DM.

3.
Clin Nutr ESPEN ; 61: 377-384, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777458

RESUMEN

Lactobacillus plantarum has been shown to improve glucose and lipid metabolism in mouse models of type 2 diabetes mellitus (T2DM). However, it remains unclear whether such benefits extend to humans. A systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to clarify the effect of L. plantarum supplementation on glucose and lipid metabolism in T2DM and prediabetes. The PubMed, Cochrane, and Web of Science databases were searched. A random-effects model was used to estimate the pooled mean difference with 95% CI (confidence interval). L. plantarum supplementation reduced the levels of fasting plasma glucose (-0.41, 95%CI -0.63, -0.19 mg/dL; n = 5) and hemoglobin A1c (-0.2, 95%CI: -0.3, 0%; n = 4). A non-statistically significant tendency towards improvements in the Homeostatic Model Assessment for Insulin Resistance (MD: -0.74, 95%CI: -1.72, 0.25; n = 3), low-density lipoprotein cholesterol (-6.87; 95%CI: -15.03, 1.29 mg/dL; n = 3), high-density lipoprotein cholesterol (MD: 1.34; 95%CI: -0.78, 3.46 mg/dL; n = 3), triglyceride (MD: -3.90; 95%CI: -11.05, 3.24 mg/dL; n = 3), and total cholesterol (MD: -4.88; 95%CI: -11.84, 2.07 mg/dL; n = 3) was observed with the supplementation. In summary, while the evidence from the currently available RCTs provides a crude indication that L. plantarum supplementation might improve glucose and lipid metabolism in patients with T2DM and prediabetes, the benefits of the supplementation are likely subtle, and its clinical significance requires further investigation.


Asunto(s)
Glucemia , Diabetes Mellitus Tipo 2 , Suplementos Dietéticos , Lactobacillus plantarum , Metabolismo de los Lípidos , Estado Prediabético , Probióticos , Ensayos Clínicos Controlados Aleatorios como Asunto , Diabetes Mellitus Tipo 2/terapia , Humanos , Estado Prediabético/terapia , Estado Prediabético/dietoterapia , Glucemia/metabolismo , Probióticos/uso terapéutico , Resistencia a la Insulina , Hemoglobina Glucada/metabolismo , Triglicéridos/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA