Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Soft Matter ; 17(24): 5932-5940, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34041518

RESUMEN

Droplet impact on pillar-arrayed polydimethylsiloxane (PDMS) surfaces with different solid fractions was studied. The lower and upper limits of Weber number, We, for complete rebound of impacting droplets decreased with decreasing solid fractions. Gaps were visible during the spreading and retraction processes of bouncing droplets on the surface with a solid fraction of 0.06 while no gaps were observed during the retraction process when We was greater than its upper limit, indicating that there existed a transition from the Cassie-Baxter wetting state to the Wenzel wetting state. Therefore, a novel model accounting for the penetration of a liquid into the cavities between the pillars was developed to predict the upper limit of the impact velocity of bouncing droplets. At high We, partial rebound was observed for surfaces with solid fractions of 0.50 and 0.20 while a sticky state was observed for the surface with a solid fraction of 0.06. Moreover, surface roughness has a great influence on the contact time of bouncing droplets. Besides, the maximum spreading parameter was found to follow a scaling law of We1/4.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA