Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sensors (Basel) ; 24(18)2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39338676

RESUMEN

With the development of the IoT, Wireless Rechargeable Sensor Networks (WRSNs) derive more and more application scenarios with diverse performance requirements. In scenarios where the energy consumption rate of sensor nodes changes dynamically, most existing charging scheduling methods are not applicable. The incorrect estimation of node energy requirement may lead to the death of critical nodes, resulting in missing events. To address this issue, we consider both the spatial imbalance and temporal dynamics of the energy consumption of the nodes, and minimize the Event Missing Rate (EMR) as the goal. Firstly, an Energy Consumption Balanced Tree (ECBT) construction method is proposed to prolong the lifetime of each node. Then, we transform the goal into Maximizing the value of the Evaluation function of each node's Energy Consumption Rate prediction (MEECR). Afterwards, the setting of the evaluation function is explored and the MEECR is further transformed into a variant of the knapsack problem, namely "the alternating backpack problem", and solved by dynamic programming. After predicting the energy consumption rate of the nodes, a charging scheduling scheme that meets the Dual Constraints of Nodes' energy requirements and MC's capability (DCNM) is developed. Simulations demonstrate the advantages of the proposed method. Compared to the baselines, the EMR was reduced by an average of 35.2% and 26.9%.

2.
Sensors (Basel) ; 24(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124117

RESUMEN

Wireless Power Transfer (WPT) has become a key technology to extend network lifetime in Wireless Rechargeable Sensor Networks (WRSNs). The traditional omnidirectional recharging method has a wider range of energy radiation, but it inevitably results in more energy waste. By contrast, the directional recharging mode enables most of the energy to be focused in a predetermined direction that achieves higher recharging efficiency. However, the MC (Mobile Charger) in this mode can only supply energy to a few nodes in each direction. Thus, how to set the location of staying points of the MC, its service sequence and its charging orientation are all important issues related to the benefit of energy replenishment. To address these problems, we propose a Fuzzy Logic-based Directional Charging (FLDC) scheme for Wireless Rechargeable Sensor Networks. Firstly, the network is divided into adjacent regular hexagonal grids which are exactly the charging regions for the MC. Then, with the help of a double-layer fuzzy logic system, a priority of nodes and grids is obtained that dynamically determines the trajectory of the MC during each round of service, i.e., the charging sequence. Next, the location of the MC's staying points is optimized to minimize the sum of charging distances between MC and nodes in the same grid. Finally, the discretized charging directions of the MC at each staying point are adjusted to further improve the charging efficiency. Simulation results show that FLDC performs well in both the charging benefit of nodes and the energy efficiency of the MC.

3.
Sensors (Basel) ; 20(5)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131487

RESUMEN

With the rapid development of the Internet of Things and the popularization of 5G communication technology, the security of resource-constrained IoT devices such as Radio Frequency Identification (RFID)-based applications have received extensive attention. In traditional RFID systems, the communication channel between the tag and the reader is vulnerable to various threats, including denial of service, spoofing, and desynchronization. Thus, the confidentiality and integrity of the transmitted data cannot be guaranteed. In order to solve these security problems, in this paper, we propose a new RFID authentication protocol based on a lightweight block cipher algorithm, SKINNY, (short for LRSAS). Security analysis shows that the LRSAS protocol guarantees mutual authentication and is resistant to various attacks, such as desynchronization attacks, replay attacks, and tracing attacks. Performance evaluations show that the proposed solution is suitable for low-cost tags while meeting security requirements. This protocol reaches a balance between security requirements and costs.

4.
Sensors (Basel) ; 20(17)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32867181

RESUMEN

The Internet of Things (IoT) has been integrated into legacy healthcare systems for the purpose of improving healthcare processes. As one of the key technologies of IoT, radio frequency identification (RFID) technology has been applied to offer services like patient monitoring, drug administration, and medical asset tracking. However, people have concerns about the security and privacy of RFID-based healthcare systems, which require a proper solution. To solve the problem, recently in 2019, Fan et al. proposed a lightweight RFID authentication scheme in the IEEE Network. They claimed that their scheme can resist various attacks in RFID systems with low implementation cost, and thus is suitable for RFID-based healthcare systems. In this article, our contributions mainly consist of two parts. First, we analyze the security of Fan et al.'s scheme and find out its security vulnerabilities. Second, we propose a novel lightweight authentication scheme to overcome these security weaknesses. The security analysis shows that our scheme can satisfy the necessary security requirements. Besides, the performance evaluation demonstrates that our scheme is of low cost. Thus, our scheme is well-suited for practical RFID-based healthcare systems.


Asunto(s)
Seguridad Computacional , Dispositivo de Identificación por Radiofrecuencia , Telemedicina , Confidencialidad , Atención a la Salud , Humanos , Internet de las Cosas , Privacidad
5.
Sensors (Basel) ; 19(13)2019 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-31277487

RESUMEN

Radio frequency identification is one of the key techniques for Internet of Things, which has been widely adopted in many applications for identification. However, there exist various security and privacy issues in radio frequency identification (RFID) systems. Particularly, one of the most serious threats is to clone tags for the goal of counterfeiting goods, which causes great loss and danger to customers. To solve these issues, lots of authentication protocols are proposed based on physical unclonable functions that can ensure an anti-counterfeiting feature. However, most of the existing schemes require secret parameters to be stored in tags, which are vulnerable to physical attacks that can further lead to the breach of forward secrecy. Furthermore, as far as we know, none of the existing schemes are able to solve the security and privacy problems with good scalability. Since many existing schemes rely on exhaustive searches of the backend server to validate a tag and they are not scalable for applications with a large scale database. Hence, in this paper, we propose a lightweight RFID mutual authentication protocol with physically unclonable functions (PUFs). The performance analysis shows that our proposed scheme can ensure security and privacy efficiently in a scalable way.

6.
Sensors (Basel) ; 19(12)2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-31212783

RESUMEN

Due to the limited energy budget, great efforts have been made to improve energy efficiency for wireless sensor networks. The advantage of compressed sensing is that it saves energy because of its sparse sampling; however, it suffers inherent shortcomings in relation to timely data acquisition. In contrast, prediction-based approaches are able to offer timely data acquisition, but the overhead of frequent model synchronization and data sampling weakens the gain in the data reduction. The integration of compressed sensing and prediction-based approaches is one promising data acquisition scheme for the suppression of data transmission, as well as timely collection of critical data, but it is challenging to adaptively and effectively conduct appropriate switching between the two aforementioned data gathering modes. Taking into account the characteristics of data gathering modes and monitored data, this research focuses on several key issues, such as integration framework, adaptive deviation tolerance, and adaptive switching mechanism of data gathering modes. In particular, the adaptive deviation tolerance is proposed for improving the flexibility of data acquisition scheme. The adaptive switching mechanism aims at overcoming the drawbacks in the traditional method that fails to effectively react to the phenomena change unless the sampling frequency is sufficiently high. Through experiments, it is demonstrated that the proposed scheme has good flexibility and scalability, and is capable of simultaneously achieving good energy efficiency and high-quality sensing of critical events.

7.
Sensors (Basel) ; 19(9)2019 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-31083606

RESUMEN

Nowadays, anyone carrying a mobile device can enjoy the various location-based services provided by the Internet of Things (IoT). 'Aggregate nearest neighbor query' is a new type of location-based query which asks the question, 'what is the best location for a given group of people to gather?' There are numerous, promising applications for this type of query, but it needs to be done in a secure and private way. Therefore, a trajectory privacy-preserving scheme, based on a trusted anonymous server (TAS) is proposed. Specifically, in the snapshot queries, the TAS generates a group request that satisfies the spatial K-anonymity for the group of users-to prevent the location-based service provider (LSP) from an inference attack-and in continuous queries, the TAS determines whether the group request needs to be resent by detecting whether the users will leave their secure areas, so as to reduce the probability that the LSP reconstructs the users' real trajectories. Furthermore, an aggregate nearest neighbor query algorithm based on strategy optimization, is adopted, to minimize the overhead of the LSP. The response speed of the results is improved by narrowing the search scope of the points of interest (POIs) and speeding up the prune of the non-nearest neighbors. The security analysis and simulation results demonstrated that our proposed scheme could protect the users' location and trajectory privacy, and the response speed and communication overhead of the service, were superior to other peer algorithms, both in the snapshot and continuous queries.

8.
Sensors (Basel) ; 18(3)2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29498684

RESUMEN

With the fast development of the Internet of Things, Radio Frequency Identification (RFID) has been widely applied into many areas. Nevertheless, security problems of the RFID technology are also gradually exposed, when it provides life convenience. In particular, the appearance of a large number of fake and counterfeit goods has caused massive loss for both producers and customers, for which the clone tag is a serious security threat. If attackers acquire the complete information of a tag, they can then obtain the unique identifier of the tag by some technological means. In general, because there is no extra identifier of a tag, it is difficult to distinguish an original tag and its clone one. Once the legal tag data is obtained, attackers can be able to clone this tag. Therefore, this paper shows an efficient RFID mutual verification protocol. This protocol is based on the Physical Unclonable Function (PUF) and the lightweight cryptography to achieve efficient verification of a single tag. The protocol includes three process: tag recognition, mutual verification and update. The tag recognition is that the reader recognizes the tag; mutual verification is that the reader and tag mutually verify the authenticity of each other; update is supposed to maintain the latest secret key for the following verification. Analysis results show that this protocol has a good balance between performance and security.

9.
Sensors (Basel) ; 18(5)2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29748503

RESUMEN

Nowadays, location-based services, which include services to identify the location of a person or an object, have many uses in social life. Though traditional GPS positioning can provide high quality positioning services in outdoor environments, due to the shielding of buildings and the interference of indoor environments, researchers and enterprises have paid more attention to how to perform high precision indoor positioning. There are many indoor positioning technologies, such as WiFi, Bluetooth, UWB and RFID. RFID positioning technology is favored by researchers because of its lower cost and higher accuracy. One of the methods that is applied to indoor positioning is the LANDMARC algorithm, which uses RFID tags and readers to implement an Indoor Positioning System (IPS). However, the accuracy of the LANDMARC positioning algorithm relies on the density of reference tags and the performance of RFID readers. In this paper, we introduce the weighted path length and support vector regression algorithm to improve the positioning precision of LANDMARC. The results show that the proposed algorithm is effective.

10.
Sensors (Basel) ; 18(9)2018 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-30231536

RESUMEN

With the increasing number of ubiquitous terminals and the continuous expansion of network scale, the problem of unbalanced energy consumption in sensor networks has become increasingly prominent in recent years. However, a node scheduling strategy or an energy consumption optimization algorithm may be not enough to meet the requirements of large-scale application. To address this problem a type of Annulus-based Energy Balanced Data Collection (AEBDC) method is proposed in this paper. The circular network is divided into several annular sectors of different sizes. Nodes in the same annulus-sector form a cluster. Based on this model, a multi-hop data forwarding strategy with the help of the candidate cluster headers is proposed to balance energy consumption during transmission and to avoid buffer overflow. Meanwhile, in each annulus, there is a Wireless Charging Vehicle (WCV) that is responsible for periodically recharging the cluster headers as well as the candidate cluster headers. By minimizing the recharging cost, the energy efficiency is enhanced. Simulation results show that AEBDC can not only alleviate the "energy hole problem" in sensor networks, but also effectively prolong the network lifetime.

11.
Sensors (Basel) ; 18(9)2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30200353

RESUMEN

To reduce time delays during data collection and prolong the network lifetime in Wireless Rechargeable Sensor Networks (WRSNs), a type of high-efficiency data collection method based on Maximum Recharging Benefit (DCMRB) is proposed in this paper. According to the minimum number of the Mobile Data Collectors (MDCs), the network is firstly divided into several regions with the help of the Virtual Scan Line (VSL). Then, the MDCs and the Wireless Charging Vehicles (WCVs) are employed in each region for high efficient data collection and energy replenishment. In order to ensure the integrity of data collection and reduce the rate of packet loss, a speed adjustment scheme for MDC is also proposed. In addition, by calculating the adaptive threshold of the recharging request, those nodes with different energy consumption rates are recharged in a timely way that avoids their premature death. Finally, the limited battery capacity of WCVs and their energy consumption while moving are also taken into account, and an adaptive recharging scheme based on maximum benefit is proposed. Experimental results show that the energy consumption is effectively balanced in DCMRB. Furthermore, this can not only enhance the efficiency of data collection, but also prolong the network lifetime compared with the Energy Starvation Avoidance Online Charging scheme (ESAOC), Greedy Mobile Scheme based on Maximum Recharging Benefit (GMS-MRB) and First-Come First-Served (FCFS) methods.

12.
Sensors (Basel) ; 18(8)2018 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-30087263

RESUMEN

With the expansion of Intelligent Transport Systems (ITS) in smart cities, the shared bicycle has developed quickly as a new green public transportation mode, and is changing the travel habits of citizens heavily across the world, especially in China. The purpose of the current paper is to provide an inclusive review and survey on shared bicycle besides its benefits, history, brands and comparisons. In addition, it proposes the concept of the Internet of Shared Bicycle (IoSB) for the first time, as far as we know, to find a feasible solution for those technical problems of the shared bicycle. The possible architecture of IoSB in our opinion is presented, as well as most of key IoT technologies, and their capabilities to merge into and apply to the different parts of IoSB are introduced. Meanwhile, some challenges and barriers to IoSB's implementation are expressed thoroughly too. As far as the advice for overcoming those barriers be concerned, the IoSB's potential aspects and applications in smart city with respect to technology development in the future provide another valuable further discussion in this paper.

13.
Sensors (Basel) ; 17(3)2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28282894

RESUMEN

With the development of wireless sensor networks, certain network problems have become more prominent, such as limited node resources, low data transmission security, and short network life cycles. To solve these problems effectively, it is important to design an efficient and trusted secure routing algorithm for wireless sensor networks. Traditional ant-colony optimization algorithms exhibit only local convergence, without considering the residual energy of the nodes and many other problems. This paper introduces a multi-attribute pheromone ant secure routing algorithm based on reputation value (MPASR). This algorithm can reduce the energy consumption of a network and improve the reliability of the nodes' reputations by filtering nodes with higher coincidence rates and improving the method used to update the nodes' communication behaviors. At the same time, the node reputation value, the residual node energy and the transmission delay are combined to formulate a synthetic pheromone that is used in the formula for calculating the random proportion rule in traditional ant-colony optimization to select the optimal data transmission path. Simulation results show that the improved algorithm can increase both the security of data transmission and the quality of routing service.

14.
Sensors (Basel) ; 17(8)2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28783073

RESUMEN

The Global Positioning System (GPS) is widely used in outdoor environmental positioning. However, GPS cannot support indoor positioning because there is no signal for positioning in an indoor environment. Nowadays, there are many situations which require indoor positioning, such as searching for a book in a library, looking for luggage in an airport, emergence navigation for fire alarms, robot location, etc. Many technologies, such as ultrasonic, sensors, Bluetooth, WiFi, magnetic field, Radio Frequency Identification (RFID), etc., are used to perform indoor positioning. Compared with other technologies, RFID used in indoor positioning is more cost and energy efficient. The Traditional RFID indoor positioning algorithm LANDMARC utilizes a Received Signal Strength (RSS) indicator to track objects. However, the RSS value is easily affected by environmental noise and other interference. In this paper, our purpose is to reduce the location fluctuation and error caused by multipath and environmental interference in LANDMARC. We propose a novel indoor positioning algorithm based on Bayesian probability and K-Nearest Neighbor (BKNN). The experimental results show that the Gaussian filter can filter some abnormal RSS values. The proposed BKNN algorithm has the smallest location error compared with the Gaussian-based algorithm, LANDMARC and an improved KNN algorithm. The average error in location estimation is about 15 cm using our method.

15.
Sensors (Basel) ; 17(6)2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28587304

RESUMEN

Unlike conventional scalar sensors, camera sensors at different positions can capture a variety of views of an object. Based on this intrinsic property, a novel model called full-view coverage was proposed. We study the problem that how to select the minimum number of sensors to guarantee the full-view coverage for the given region of interest (ROI). To tackle this issue, we derive the constraint condition of the sensor positions for full-view neighborhood coverage with the minimum number of nodes around the point. Next, we prove that the full-view area coverage can be approximately guaranteed, as long as the regular hexagons decided by the virtual grid are seamlessly stitched. Then we present two solutions for camera sensor networks in two different deployment strategies. By computing the theoretically optimal length of the virtual grids, we put forward the deployment pattern algorithm (DPA) in the deterministic implementation. To reduce the redundancy in random deployment, we come up with a local neighboring-optimal selection algorithm (LNSA) for achieving the full-view coverage. Finally, extensive simulation results show the feasibility of our proposed solutions.

16.
Sensors (Basel) ; 16(6)2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27338401

RESUMEN

To balance energy consumption and reduce latency on data transmission in Wireless Sensor Networks (WSNs), a type of low-latency data gathering method with multi-Sink (LDGM for short) is proposed in this paper. The network is divided into several virtual regions consisting of three or less data gathering units and the leader of each region is selected according to its residual energy as well as distance to all of the other nodes. Only the leaders in each region need to communicate with the mobile Sinks which have effectively reduced energy consumption and the end-to-end delay. Moreover, with the help of the sleep scheduling and the sensing radius adjustment strategies, redundancy in network coverage could also be effectively reduced. Simulation results show that LDGM is energy efficient in comparison with MST as well as MWST and its time efficiency on data collection is higher than one Sink based data gathering methods.

17.
ScientificWorldJournal ; 2014: 416218, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136667

RESUMEN

Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Modelos Teóricos , Multimedia , Tecnología de Sensores Remotos/métodos , Tecnología Inalámbrica
18.
ScientificWorldJournal ; 2014: 846784, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25045747

RESUMEN

Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme.

19.
Neural Netw ; 179: 106511, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39146718

RESUMEN

Recent image classification efforts have achieved certain success by incorporating prior information such as labels and logical rules to learn discriminative features. However, these methods overlook the variability of features, resulting in feature inconsistency and fluctuations in model parameter updates, which further contribute to decreased image classification accuracy and model instability. To address this issue, this paper proposes a novel method combining structural prior-driven feature extraction with gradient-momentum (SPGM), from the perspectives of consistent feature learning and precise parameter updates, to enhance the accuracy and stability of image classification. Specifically, SPGM leverages a structural prior-driven feature extraction (SPFE) approach to calculate gradients of multi-level features and original images to construct structural information, which is then transformed into prior knowledge to drive the network to learn features consistent with the original images. Additionally, an optimization strategy integrating gradients and momentum (GMO) is introduced, dynamically adjusting the direction and step size of parameter updates based on the angle and norm of the sum of gradients and momentum, enabling precise model parameter updates. Extensive experiments on CIFAR10 and CIFAR100 datasets demonstrate that the SPGM method significantly reduces the top-1 error rate in image classification, enhances the classification performance, and outperforms state-of-the-art methods.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Humanos , Aprendizaje Profundo
20.
Sensors (Basel) ; 10(3): 2064-87, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-22294915

RESUMEN

Deployment quality and cost are two conflicting aspects in wireless sensor networks. Random deployment, where the monitored field is covered by randomly and uniformly deployed sensor nodes, is an appropriate approach for large-scale network applications. However, their successful applications depend considerably on the deployment quality that uses the minimum number of sensors to achieve a desired coverage. Currently, the number of sensors required to meet the desired coverage is based on asymptotic analysis, which cannot meet deployment quality due to coverage overestimation in real applications. In this paper, we first investigate the coverage overestimation and address the challenge of designing coverage-guaranteed deployment strategies. To overcome this problem, we propose two deployment strategies, namely, the Expected-area Coverage Deployment (ECD) and BOundary Assistant Deployment (BOAD). The deployment quality of the two strategies is analyzed mathematically. Under the analysis, a lower bound on the number of deployed sensor nodes is given to satisfy the desired deployment quality. We justify the correctness of our analysis through rigorous proof, and validate the effectiveness of the two strategies through extensive simulation experiments. The simulation results show that both strategies alleviate the coverage overestimation significantly. In addition, we also evaluate two proposed strategies in the context of target detection application. The comparison results demonstrate that if the target appears at the boundary of monitored region in a given random deployment, the average intrusion distance of BOAD is considerably shorter than that of ECD with the same desired deployment quality. In contrast, ECD has better performance in terms of the average intrusion distance when the invasion of intruder is from the inside of monitored region.


Asunto(s)
Redes de Comunicación de Computadores , Modelos Teóricos , Tecnología de Sensores Remotos , Simulación por Computador , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA