RESUMEN
Here, we showed that the acetylation-defective p53-4KR mice, lacking the ability of cell cycle arrest, senescence, apoptosis, and ferroptosis, were tumor prone but failed to develop early-onset tumors. By identifying a novel p53 acetylation site at lysine K136, we found that simultaneous mutations at all five acetylation sites (p53-5KR) diminished its remaining tumor suppression function. Moreover, the embryonic lethality caused by the deficiency of mdm2 was fully rescued in the background of p535KR/5KR , but not p534KR/4KR background. p53-4KR retained the ability to suppress mTOR function but this activity was abolished in p53-5KR cells. Notably, the early-onset tumor formation observed in p535KR/5KR and p53-null mice was suppressed upon the treatment of the mTOR inhibitor. These results suggest that p53-mediated mTOR regulation plays an important role in both embryonic development and tumor suppression, independent of cell cycle arrest, senescence, apoptosis, and ferroptosis.
Asunto(s)
Puntos de Control del Ciclo Celular/genética , Neoplasias/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Embrión de Mamíferos , Lisina/genética , Lisina/metabolismo , Ratones , Mutación/genética , Neoplasias/fisiopatología , Proteínas Proto-Oncogénicas c-mdm2/deficiencia , Proteínas Proto-Oncogénicas c-mdm2/genética , Sirolimus/farmacología , Análisis de SupervivenciaRESUMEN
Malvaceae comprise some 4,225 species in 243 genera and nine subfamilies and include economically important species, such as cacao, cotton, durian, and jute, with cotton an important model system for studying the domestication of polyploids. Here, we use chromosome-level genome assemblies from representatives of five or six subfamilies (depending on the placement of Ochroma) to differentiate coexisting subgenomes and their evolution during the family's deep history. The results reveal that the allohexaploid Helicteroideae partially derive from an allotetraploid Sterculioideae and also form a component of the allodecaploid Bombacoideae and Malvoideae. The ancestral Malvaceae karyotype consists of 11 protochromosomes. Four subfamilies share a unique reciprocal chromosome translocation, and two other subfamilies share a chromosome fusion. DNA alignments of single-copy nuclear genes do not yield the same relationships as inferred from chromosome structural traits, probably because of genes originating from different ancestral subgenomes. These results illustrate how chromosome-structural data can unravel the evolutionary history of groups with ancient hybrid genomes.
Asunto(s)
Genoma de Planta , Gossypium , Genoma de Planta/genética , Gossypium/genética , Genómica/métodos , Poliploidía , Cariotipo , Evolución MolecularRESUMEN
PURPOSE: Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS: In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS: Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION: The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.
Asunto(s)
Autoanticuerpos , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Nocardiosis , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Nocardiosis/inmunología , Nocardiosis/diagnóstico , Femenino , Masculino , Persona de Mediana Edad , Anciano , Adulto , Proteinosis Alveolar Pulmonar/inmunología , Proteinosis Alveolar Pulmonar/diagnóstico , Cryptococcus gattii/inmunologíaRESUMEN
PURPOSE: Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS: We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS: We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION: Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.
Asunto(s)
Candidiasis Mucocutánea Crónica , Mutación con Ganancia de Función , Inmunofenotipificación , Pirazoles , Factor de Transcripción STAT1 , Humanos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/metabolismo , Candidiasis Mucocutánea Crónica/genética , Candidiasis Mucocutánea Crónica/diagnóstico , Candidiasis Mucocutánea Crónica/terapia , Masculino , Femenino , Pirazoles/uso terapéutico , Sulfonamidas/uso terapéutico , Azetidinas/uso terapéutico , Purinas/uso terapéutico , Niño , Adolescente , Taiwán , AdultoRESUMEN
Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.
Asunto(s)
Enfermedades Metabólicas , Enfermedades Mitocondriales , Humanos , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Alcoholes Grasos/farmacología , Alcoholes Grasos/metabolismo , Catecoles/farmacología , Fructosa/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Mitocondriales/metabolismoRESUMEN
Thermochromic vanadium dioxide (VO2) can intelligently modulate the transmittance of indoor solar radiation to reduce the energy consumption of air conditioning in buildings. Nevertheless, it remains a great challenge to simultaneously improve the luminous transmittance (Tlum) and solar modulation ability (ΔTsol) of VO2. In this study, a novel approach is employed utilizing a coordination compound to finely tune the growth of a VO2 based composite film, yielding a hierarchical film comprising Zn2V2O7 nanoflakes and VO2@Zn2V2O7 core-shell nanoparticles. Remarkably, the resulting composite films showcase exceptional optical performance, achieving a Tlum of up to 73.0% and ΔTsol of 15.7%. These outcomes are attributed to the antireflection properties inherent in the nanoflake structure and the localized surface plasmon resonance of well-dispersed VO2 nanoparticles. In addition, the Zn2V2O7-VO2 film demonstrates remarkable environmental durability, retaining 90% of its initial ΔTsol even after undergoing aging at 100 °C under 50% relative humidity for a substantial period of 30 days - a durability equivalent to ≈20 years under ambient conditions. This work not only achieves a harmonious balance between Tlum and ΔTsol but also introduces a promising avenue for the design of distinctive composite nanostructures.
RESUMEN
Macrophage dysfunction is one of the primary factors leading to the delayed healing of diabetic wounds. Hypoxic bone marrow mesenchymal stem cells-derived exosomes (hyBMSC-Exos) have been shown to play an active role in regulating cellular function through the carried microRNAs. However, the administration of hyBMSC-Exos alone in diabetic wounds usually brings little effect, because the exosomes are inherently unstable and have a short retention time at the wounds. In this study, a multifunctional hydrogel based on gallic acid (GA) conjugated chitosan (Chi-GA) and partially oxidized hyaluronic acid (OHA) is prepared for sustained release of hyBMSC-Exos. The hydrogel not only exhibits needs-satisfying physicochemical properties, but also displays outstanding biological performances such as low hemolysis rate, strong antibacterial capacity, great antioxidant ability, and excellent biocompatibility. It has the ability to boost the stability of hyBMSC-Exos, leading to a continuous and gradual release of the exosomes at wound locations, ultimately enhancing the exosomes' uptake efficiency by target cells. Most importantly, hyBMSC-Exos loaded hydrogel shows an excellent ability to promote diabetic wound healing by regulating macrophage polarization toward M2 phenotype. This may be because exosomal miR-4645-5p and antioxidant property of the hydrogel synergistically inhibit SREBP2 activity in macrophages. This study presents a productive approach for managing diabetic wounds.
Asunto(s)
Complicaciones de la Diabetes , Exosomas , Hidrogeles , Células Madre Mesenquimatosas , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Hidrogeles/uso terapéutico , Exosomas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Complicaciones de la Diabetes/tratamiento farmacológico , Complicaciones de la Diabetes/patología , Piel/efectos de los fármacos , Piel/lesiones , Humanos , Supervivencia Celular/efectos de los fármacos , Bacterias/efectos de los fármacosRESUMEN
A method for maintaining a fixed phase relationship between the driving signal of acousto-optic modulator (AOM) and the original mode-locked seed laser is proposed and realized, which stabilizes the amplitude of diffracted signal output from the AOM for subsequent amplification. A field-programmable gate array (FPGA), combined with external summing amplifiers, is used to directly synthesize high-timing-precision driving signals that are synchronized with the seed laser pulses, and the accuracy of signal timing control reaches 160â ps. Using this driver, the standard deviation of the diffracted signal output from the AOM is significantly decreased from 0.52% to 0.18%. This pulse-picking solution also includes a control system that can flexibly control the frequency, gating width, etc., of the driving signal, which makes it more convenient for subsequent laser amplification and makes it suitable for a variety of mode-locked lasers.
RESUMEN
INTRODUCTION: The World Stroke Organization (WSO) Brain & Heart Task Force developed the Brain & hEart globAl iniTiative (BEAT), a pilot feasibility implementation program to establish clinical collaborations between cardiologists and stroke physicians who work at large healthcare facilities. METHODS: The WSO BEAT pilot project focused on atrial fibrillation (AF) and patent foramen ovale (PFO) detection and management, and poststroke cardiovascular complications known as the stroke-heart syndrome. The program included 10 sites from 8 countries: Brazil, China, Egypt, Germany, Japan, Mexico, Romania, and the USA The primary composite feasibility outcome was the achievement of the following 3 implementation metrics (1) developing site-specific clinical pathways for the diagnosis and management of AF, PFO, and the stroke-heart syndrome; (2) establishing regular Neurocardiology rounds (e.g., monthly); and (3) incorporating a cardiologist to the stroke team. The secondary objectives were (1) to identify implementation challenges to guide a larger program and (2) to describe qualitative improvements. RESULTS: The WSO BEAT pilot feasibility program achieved the prespecified primary composite outcome in 9 of 10 (90%) sites. The most common challenges were the limited access to specific medications (e.g., direct oral anticoagulants) and diagnostic (e.g., prolonged cardiac monitoring) or therapeutic (e.g., PFO closure devices) technologies. The most relevant qualitative improvement was the achievement of a more homogeneous diagnostic and therapeutic approach. CONCLUSION: The WSO BEAT pilot program suggests that developing neurocardiology collaborations is feasible. The long-term sustainability of the WSO BEAT program and its impact on quality of stroke care and clinical outcomes needs to be tested in a larger and longer duration program.
Asunto(s)
Fibrilación Atrial , Foramen Oval Permeable , Accidente Cerebrovascular , Humanos , Proyectos Piloto , Factores de Riesgo , Cateterismo Cardíaco/efectos adversos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/etiología , Foramen Oval Permeable/diagnóstico , Foramen Oval Permeable/diagnóstico por imagen , Fibrilación Atrial/diagnóstico , Prevención Secundaria , Encéfalo , Resultado del Tratamiento , RecurrenciaRESUMEN
Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.
RESUMEN
In wastewater treatment plants (WWTPs), ammonia oxidation is primarily carried out by three types of ammonia oxidation microorganisms (AOMs): ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and comammox (CMX). Antibiotic resistance genes (ARGs), which pose an important public health concern, have been identified at every stage of wastewater treatment. However, few studies have focused on the impact of ARGs on ammonia removal performance. Therefore, our study sought to investigate the effect of the representative multidrug-resistant plasmid RP4 on the functional microorganisms involved in ammonia oxidation. Using an inhibitor-based method, we first evaluated the contributions of AOA, AOB, and CMX to ammonia oxidation in activated sludge, which were determined to be 13.7%, 41.1%, and 39.1%, respectively. The inhibitory effects of C2H2, C8H14, and 3,4-dimethylpyrazole phosphate (DMPP) were then validated by qPCR. After adding donor strains to the sludge, fluorescence in situ hybridization (FISH) imaging analysis demonstrated the co-localization of RP4 plasmids and all three AOMs, thus confirming the horizontal gene transfer (HGT) of the RP4 plasmid among these microorganisms. Significant inhibitory effects of the RP4 plasmid on the ammonia nitrogen consumption of AOA, AOB, and CMX were also observed, with inhibition rates of 39.7%, 36.2%, and 49.7%, respectively. Moreover, amoA expression in AOB and CMX was variably inhibited by the RP4 plasmid, whereas AOA amoA expression was not inhibited. These results demonstrate the adverse environmental effects of the RP4 plasmid and provide indirect evidence supporting plasmid-mediated conjugation transfer from bacteria to archaea.
Asunto(s)
Archaea , Betaproteobacteria , Archaea/genética , Archaea/metabolismo , Aguas del Alcantarillado/microbiología , Amoníaco , Nitrógeno/metabolismo , Desnitrificación , Hibridación Fluorescente in Situ , Oxidación-Reducción , Bacterias/genética , Bacterias/metabolismo , Plásmidos/genética , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Antibacterianos , Filogenia , Microbiología del SueloRESUMEN
BACKGROUND: Type 2 diabetes mellitus (T2DM) is closely linked to metabolic syndrome, characterised by insulin resistance, hyperglycaemia, abnormal lipid metabolism, and chronic inflammation. Diabetic ulcers (DUs) comprise consequential complications that arise as a result of T2DM. To investigate, db/db mice were used for the disease model. The findings demonstrated that a scaffold made from a combination of rhubarb charcoal-crosslinked chitosan and silk fibroin, designated as RCS/SF, was able to improve the healing process of diabetic wounds in db/db mice. However, previous studies have primarily concentrated on investigating the impacts of the RSC/SF scaffold on wound healing only, while its influence on the entire body has not been fully elucidated. MATERIAL AND METHODS: The silk fibroin/chitosan sponge scaffold containing rhubarb charcoal was fabricated in the present study using a freeze-drying approach. Subsequently, an incision with a diameter of 8 mm was made on the dorsal skin of the mice, and the RCS/SF scaffold was applied directly to the wound for 14 days. Subsequently, the impact of RCS/SF scaffold therapy on hepatic lipid metabolism was assessed through analysis of serum and liver biochemistry, histopathology, quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blotting. RESULTS: The use of the RCS/SF scaffold led to an enhancement in the conditions associated with serum glucolipid metabolism in db/db mice. An assessment of hepatic histopathology further confirmed this enhancement. Additionally, the qRT-PCR analysis revealed that treatment with RCS/SF scaffold resulted in the downregulation of genes associated with fatty acid synthesis, fatty acid uptake, triglyceride (TG) synthesis, gluconeogenesis, and inflammatory factors. Moreover, the beneficial effect of the RCS/SF scaffold on oxidative stress was shown by assessing antioxidant enzymes and lipid peroxidation. Additionally, the network pharmacology analysis verified that the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway had a vital function in mitigating non-alcoholic fatty liver disease (NAFLD) by utilizing R. officinale. The measurement of AMPK, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) gene and protein expression provided support for this discovery. Furthermore, the molecular docking investigations revealed a robust affinity between the active components of rhubarb and the downstream targets of AMPK (SREBP1 and FASN). CONCLUSION: By regulating the AMPK signalling pathway, the RCS/SF scaffold applied topically effectively mitigated hepatic lipid accumulation, decreased inflammation, and attenuated oxidative stress. The present study, therefore, emphasises the crucial role of the topical RCS/SF scaffold in regulating hepatic lipid metabolism, thereby confirming the concept of "external and internal reshaping".
Asunto(s)
Quitosano , Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Fibroínas , Enfermedad del Hígado Graso no Alcohólico , Rheum , Ratones , Animales , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Rheum/metabolismo , Carbón Orgánico/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/uso terapéutico , Fibroínas/metabolismo , Fibroínas/farmacología , Fibroínas/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Simulación del Acoplamiento Molecular , Úlcera/metabolismo , Úlcera/patología , Hígado/metabolismo , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico/patología , Complicaciones de la Diabetes/patología , Inflamación/patología , Ácidos Grasos/metabolismo , Lípidos/uso terapéuticoRESUMEN
Pentachlorophenol (PCP) was once used as a pesticide, germicide, and preservative due to its stable properties and resistance to degradation. This study aimed to design a biosensor for the quantitative and prompt detection of capable of PCP. A cell-free fluorescence biosensor was developed while employing NalC, an allosteric Transcription Factor responsive to PCP and In Vitro Transcription. By adding a DNA template and PCP and employing Electrophoretic Mobility Shift Assay while monitoring the dynamic fluorescence changes in RNA, this study offers evidence of NalC's potential applicability in sensor systems developed for the specific detection of PCP. The biosensor showed the capability for the quantitative detection of PCP, with a Limit of Detection (LOD) of 0.21 µM. Following the addition of Nucleic Acid Sequence-Based Amplification, the fluorescence intensity of RNA revealed an excellent linear relationship with the concentration of PCP, showing a correlation coefficient (R2) of 0.9595. The final LOD was determined to be 0.002 µM. This study has successfully translated the determination of PCP into a fluorescent RNA output, thereby presenting a novel approach for detecting PCP within environmental settings.
Asunto(s)
Técnicas Biosensibles , Pentaclorofenol , Pentaclorofenol/análisis , Técnicas Biosensibles/métodos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Límite de Detección , Fluorescencia , Sistema Libre de CélulasRESUMEN
BACKGROUND: Conflicting results were shown on the relationship between cerebral microbleeds (CMBs) burden and functional outcomes in patients treated with intravenous tissues plasminogen activator (IV tPA). We aimed to investigate the relationship between CMBs burden and functional outcomes using the Microbleed Anatomical Rating Scale (MARS) and determine its optimal cutoff value. METHODS: A retrospective study was conducted to include patients treated with IV tPA in our stroke center, and the MARS was used to assess the CMBs burden. Other clinical data including demographic factors, stroke severity, vascular risk factors, and clinical outcomes were also documented. Another mediation analysis was performed to investigate whether early neurological improvement could mediate the association between MARS and functional outcomes. RESULTS: A total of 408 patients were included. A cutoff value of 1.5 could predict functional outcomes in patients treated with IV tPA. Based on that cutoff value, MARS showed an independent relationship with functional outcomes [adjusted OR (Odds Ratio) 0.841, 95% confidence interval (CI) 0.720-0.982, P = .029]. A shift analysis showed that higher MARS score (MARS ≥1.5) was related with poor functional outcome according to mRS score distribution (OR = 0.519, 95% CI 0.336-0.803, P = .003). Total effect (indirect + direct effect) was calculated and showed in figure. Early neurological improvement mediated 24% of the effect of MARS score on functional outcomes. CONCLUSION: Our study showed that MARS could be a potential method to assess the functional outcome based on CMBs in patients treated with IV tPA, and MARS score ≥ 1.5 might be an optimal threshold for poor functional outcome.
Asunto(s)
Fibrinolíticos , Accidente Cerebrovascular Isquémico , Terapia Trombolítica , Activador de Tejido Plasminógeno , Humanos , Femenino , Masculino , Estudios Retrospectivos , Activador de Tejido Plasminógeno/administración & dosificación , Activador de Tejido Plasminógeno/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Anciano , Fibrinolíticos/administración & dosificación , Fibrinolíticos/uso terapéutico , Terapia Trombolítica/métodos , Persona de Mediana Edad , Hemorragia Cerebral , Índice de Severidad de la Enfermedad , Administración Intravenosa , Resultado del Tratamiento , Relevancia ClínicaRESUMEN
This study aimed to investigate the effects of a Roy adaptation model (RAM)-based cognitive stimulation therapy (CST) intervention on elderly patients diagnosed with primary non-small cell lung cancer (NSCLC) undergoing curative resection. A total of 280 patients diagnosed with primary NSCLC were randomized into RAM-based CST group and control group. Outcomes were assessed at three intervals: pre-surgery, discharge, and one-month post-discharge. Cognitive function was evaluated using Mini-Cognitive test. Postoperative delirium prevalence was determined within 48 hours post-surgery using Nursing Delirium Screening Scale. The Hospital Anxiety and Depression Scale evaluated anxiety and depression symptoms, while Quality of Life (QoL) was assessed via Short Form-36 (SF36) Health Survey. The RAM-based CST group demonstrated significantly higher Mini-Cog test scores than the control group upon discharge and post-intervention. Patients with RAM-based CST exhibited a decrease in postoperative delirium compared to the control group. The RAM-based CST intervention yielded an improvement in anxiety and depression at discharge and 1-month post-discharge compared to preoperative levels. Additionally, the RAM-based CST group exhibited substantial enhancements in SF36 subcategory scores at 1-month post-discharge compared to pre-surgery. At post-intervention, the RAM-based CST group demonstrated significantly higher scores than the control group across various health-related domains, including role limitations due to emotional problems, mental health, general health perception, bodily pain, and role limitations due to physical problems. The RAM-based CST intervention in elderly NSCLC patients undergoing curative resection yielded significant enhancements in cognitive function, reduced delirium incidence, improved emotional well-being, and better QoL postoperatively.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Calidad de Vida , Humanos , Carcinoma de Pulmón de Células no Pequeñas/cirugía , Femenino , Anciano , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/psicología , Masculino , Resultado del Tratamiento , Terapia Cognitivo-Conductual/métodos , Depresión/terapia , Cognición , Ansiedad/terapia , Anciano de 80 o más Años , DelirioRESUMEN
Cylindrospermopsin (CYN), a cyanobacterial toxin, has been detected in the global water environment. However, information concerning the potential environmental risk of CYN is limited, since the majority of previous studies have mainly focused on the adverse health effects of CYN through contaminated drinking water. The present study reported that CYN at environmentally relevant levels (0.1-100⯵g/L) can significantly enhance the conjugative transfer of RP4 plasmid in Escherichia coli genera, wherein application of 10⯵g/L of CYN led to maximum fold change of â¼6.5- fold at 16â¯h of exposure. Meanwhile, evaluation of underlying mechanisms revealed that environmental concentration of CYN exposure could increase oxidative stress in the bacterial cells, resulting in ROS overproduction. In turn, this led to an upregulation of antioxidant enzyme-related genes to avoid ROS attack. Further, inhibition of the synthesis of glutathione (GSH) was also detected, which led to the rapid depletion of GSH in cells and thus triggered the SOS response and promoted the conjugative transfer process. Increase in cell membrane permeability, upregulation of expression of genes related to pilus generation, ATP synthesis, and RP4 gene expression were also observed. These results highlight the potential impact on the spread of antimicrobial resistance in water environments.
Asunto(s)
Alcaloides , Toxinas Bacterianas , Toxinas de Cianobacterias , Escherichia coli , Glutatión , Plásmidos , Uracilo , Plásmidos/genética , Glutatión/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Toxinas Bacterianas/toxicidad , Uracilo/análogos & derivados , Uracilo/toxicidad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Conjugación Genética , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genéticaRESUMEN
Tubular injury and oxidative stress are involved in the pathogenesis of diabetic kidney disease (DKD). Astragaloside IV (ASIV) is a natural antioxidant. The effects and underlying molecular mechanisms of ASIV on DKD have not been elucidated. The db/db mice and high-glucose-stimulated HK2 cells were used to evaluate the beneficial effects of ASIV in vivo and in vitro. Succinylated proteomics was used to identify novel mechanisms of ASIV against DKD and experimentally further validated. ASIV alleviated renal dysfunction and proteinuria, downregulated fasting blood glucose, and upregulated insulin sensitivity in db/db mice. Meanwhile, ASIV alleviated tubular injury, oxidative stress, and mitochondrial dysfunction in vivo and in vitro. Mechanistically, ASIV reversed downregulated 17beta-hydroxysteroid dehydrogenase type 10 (HSD17B10) lysine succinylation by restoring carnitine palmitoyl-transferase1alpha (Cpt1a or CPT1A) activity in vivo and in vitro. Molecular docking and cell thermal shift assay revealed that ASIV may bind to CPT1A. Molecular dynamics simulations demonstrated K99 succinylation of HSD17B10 maintained mitochondrial RNA ribonuclease P (RNase P) stability. The K99R mutation of HSD17B10 induced oxidative stress and disrupted its binding to CPT1A or mitochondrial ribonuclease P protein 1 (MRPP1). Importantly, ASIV restored the interaction between HSD17B10 and MRPP1 in vivo and in vitro. We also demonstrated that ASIV reversed high-glucose-induced impaired RNase P activity in HK2 cells, which was suppressed upon K99R mutation of HSD17B10. These findings suggest that ASIV ameliorates oxidative stress-associated proximal tubular injury by upregulating CPT1A-mediated K99 succinylation of HSD17B10 to maintain RNase P activity.
Asunto(s)
Carnitina O-Palmitoiltransferasa , Nefropatías Diabéticas , Células Epiteliales , Lisina , Estrés Oxidativo , Saponinas , Triterpenos , Triterpenos/farmacología , Estrés Oxidativo/efectos de los fármacos , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Animales , Saponinas/farmacología , Ratones , Carnitina O-Palmitoiltransferasa/metabolismo , Masculino , Humanos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Línea Celular , Regulación hacia Arriba/efectos de los fármacos , Ratones Endogámicos C57BL , Simulación del Acoplamiento MolecularRESUMEN
A 1,2:3,4:9,10:9,19-tetraseco-cycloartane triterpene spiroketal lactone, pseudoamaolide P (1), two new labdane-type diterpenoids, pseudoamains A and B (2-3), and four known cembrane-type diterpenoids (4-7) were isolated from the seeds of Pseudolarix amabilis. The structures of these compounds were elucidated by spectroscopic analyses, including HRESIMS, 1D-, and 2D-NMR. The anti-inflammatory activities of the compounds were evaluated by suppressing the transcription of the NF-κB-dependent reporter gene in LPS-induced 293 T/NF-κB-luc cells. All compounds do not show potent activity.
Asunto(s)
Diterpenos , Furanos , Compuestos de Espiro , Triterpenos , Lactonas/farmacología , FN-kappa B , Triterpenos/farmacología , Triterpenos/química , Diterpenos/farmacología , Diterpenos/química , Semillas , Estructura MolecularRESUMEN
High malignancy is a prominent characteristic of epithelial ovarian cancer (EOC), emphasizing the necessity for further elucidation of the potential mechanisms underlying cancer progression. Aneuploidy and copy number variation (CNV) partially contribute to the heightened malignancy observed in EOC; however, the precise features of aneuploidy and their underlying molecular patterns, as well as the relationship between CNV and aneuploidy in EOC, remain unclear. In this study, we employed single-cell sequencing data along with The Cancer Genome Atlas (TCGA) to investigate aneuploidy and CNV in EOC. The technique of fluorescence in situ hybridization (FISH) was employed using specific probes. The copy number variation within the genomic region of chromosome 8 (42754568-47889815) was assessed and utilized as a representative measure for the ploidy status of individual cells in chromosome 8. Differential expression analysis was performed between different subgroups based on chromosome 8 ploidy. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI), and hub-gene analyses were subsequently utilized to identify crucial genes involved. By classifying enriched tumor cells into distinct subtypes based on chromosome 8 ploidy combined with TCGA data integration, we identified key genes driving chromosome 8 aneuploidy in EOC, revealing that PRKDC gene involvement through the mediated non-homologous end-joining pathway may play a pivotal role in disease progression. Further validation through analysis of the GEO and TCGA database and survival assessment, considering both mRNA expression levels and CNV status of PRKDC, has confirmed its involvement in the progression of EOC. Further functional analysis revealed an upregulation of PRKDC in both ovarian EOC cells and tissues, with its expression showing a significant correlation with the extent of copy number variation (CNV) on chromosome 8. Taken together, CNV amplification and aneuploidy of chromosome 8 are important characteristics of EOC. PRKDC and the mediated NHEJ pathway may play a crucial role in driving aneuploidy on chromosome 8 during the progression of EOC.