Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Mol Carcinog ; 62(4): 464-478, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36585906

RESUMEN

RBM4 has been reported as a tumor suppressor gene in cancers, including lung cancer, colon cancer and gastric cancer. However, the role of RBM4 in clear cell renal cell carcinoma (ccRCC) remains unclear. Therefore, the present study investigated the expression and biological function of RBM4 in ccRCC. Analysis of the differential expression of RBM4 and its relationship with clinicopathological features using ccRCC samples data from TCGA database deminstrated that RBM4 expression in tumor samples of ccRCC was lower than that in normal samples, and RBM4 expression was closely related to the survival time of patients. RBM4 overexpression (RBM4-oe) cell lines were constructed to investigate the effect of RBM4 on biological function using CCK-8, EdU, flow cytometry and wound-healing assays. In addition, the regulatory effect of RBM4 on signaling pathways was investigated by GSEA and WB assays. RBM4-oe significantly reduced the proliferation of ccRCC cells by controlling the p53 signaling pathway, inhibited cell cycle progression and promoted apoptosis. In addition, RBM4-oe suppressed the migration and invasion of cells by EMT. Mechanistically, RBM4-oe facilitated the activity of the p53 signaling pathway by enhancing the stability of p53 mRNA. Finally, RBM4-oe markedly inhibited the growth of tumors formed with 786-O cells in vivo. In summary, there findings suggeated that RBM4 inhibits the progression of ccRCC by promoting p53 signaling pathway activity by enhancing the stability of p53 mRNA, suggesting that RBM4 may be a potential target for the treatment of patients.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Proteína p53 Supresora de Tumor/genética , ARN Mensajero/genética , Proliferación Celular/genética , Neoplasias Renales/patología , Línea Celular Tumoral , Proteínas de Unión al ARN/genética
2.
Cancer Sci ; 111(5): 1555-1566, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32128917

RESUMEN

There is increasing evidence that bone morphogenetic proteins (BMP) are involved in the proliferation and drug tolerance of kidney cancer. However, the molecular mechanism of BMP8A in renal cell proliferation and drug tolerance is not clear. Here we showed that BMP8A was highly expressed in renal cell carcinoma, which suggests a poor prognosis of ccRCC. Promotion of cell proliferation and inhibition of apoptosis were detected by CCK-8 assay, Trypan Blue staining, flow cytometry and bioluminescence. BMP8A promoted resistance of As2 O3 by regulating Nrf2 and Wnt pathways in vitro and in vivo. Mechanistically, BMP8A enhanced phosphorylation of Nrf2, which, in turn, inhibited Keap1-mediated Nrf2 ubiquitination and, ultimately, promoted nuclear translocation and transcriptional activity of Nrf2. Nrf2 regulates the transcription of TRIM24 detected by ChIP-qPCR. BMP8A was highly expressed in ccRCC, which suggests a poor prognosis. BMP8A was expected to be an independent prognostic molecule for ccRCC. On the one hand, activated Nrf2 regulated reactive oxygen balance, and on the other hand, by regulating the transcription level of TRIM24, it was involved in the regulation of the Wnt pathway to promote the proliferation, invasion and metastasis of ccRCC and the resistance of As2 O3 . Taken together, our findings describe a regulatory axis where BMP8A promotes Nrf2 phosphorylation and activates TRIM24 to promote survival and drug resistance in ccRCC.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Carcinoma de Células Renales/patología , Proteínas Portadoras/metabolismo , Resistencia a Antineoplásicos , Neoplasias Renales/patología , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Trióxido de Arsénico/farmacología , Proteínas Morfogenéticas Óseas/genética , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/metabolismo , Proteínas Portadoras/genética , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , Masculino , Ratones , Ratones Desnudos , Factor 2 Relacionado con NF-E2/genética , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Vía de Señalización Wnt
3.
Mol Cancer ; 18(1): 15, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670025

RESUMEN

BACKGROUND: The long noncoding RNA (lncRNA) OTUD6B antisense RNA 1 (OTUD6B-AS1) is oriented in an antisense direction to the protein-coding gene OTUD6B on the opposite DNA strand. TCGA database data show that the expression of the lncRNA OTUD6B-AS1 is downregulated and that OTUD6B-AS1 acts as an antioncogene in a variety of tumors. However, the expression and biological functions of the lncRNA OTUD6B-AS1 are still unknown in tumors, including clear cell renal cell carcinoma (ccRCC). METHODS: The expression level of OTUD6B-AS1 was measured in 75 paired human ccRCC tissue and corresponding adjacent normal renal tissue samples. The correlations between the OTUD6B-AS1 expression level and clinicopathological features were evaluated using the chi-square test. The effects of OTUD6B-AS1 on ccRCC cells were determined via MTT assay, clone formation assay, transwell assay, and flow cytometry. Furthermore, the impact of OTUD6B-AS1 overexpression on the activation of the Wnt/ß-catenin signaling pathway was investigated. Finally, ACHN cells with OTUD6B-AS1 overexpression were subcutaneously injected into nude mice to evaluate the influence of OTUD6B-AS1 on tumor growth in vivo. RESULTS: In this study, we found that the expression of the lncRNA OTUD6B-AS1 was downregulated in ccRCC tissue samples and that patients with low OTUD6B-AS1 expression had shorter overall survival than patients with high OTUD6B-AS1 expression, which showed that the different expression level of OTUD6B-AS1 indirectly correlated with survival of patients. Lentivirus-mediated OTUD6B-AS1 overexpression significantly decreased the proliferation of ccRCC cells and promoted the apoptosis of the cells. Furthermore, OTUD6B-AS1 overexpression partly inhibited cell migration and invasion. The overexpression of OTUD6B-AS1 decreased the activity of the Wnt/ß-catenin pathway and suppressed the expression of epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin, N-cadherin and Snail) in ccRCC cells. In addition, compared with the parental ACHN cells, OTUD6B-AS1-overexpressing ACHN cells injected into nude mice exhibited decreased tumor growth in vivo. CONCLUSIONS: Taken together, our findings present a road map for targeting the newly identified lncRNA OTUD6B-AS1 to suppress ccRCC progression in cell lines, and these results elucidate a novel potential therapeutic target for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proliferación Celular/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , ARN Largo no Codificante/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Apoptosis/genética , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Progresión de la Enfermedad , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/genética , Femenino , Humanos , Ratones , Ratones Desnudos , Pronóstico
4.
ISA Trans ; : 1-13, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39304368

RESUMEN

This article investigates an adaptive dynamic programming-based online compensation hierarchical sliding-mode control problem for a class of partially unknown switched nonlinear systems with actuator failures and uncertain perturbations under an identifier-critic neural networks architecture. Firstly, by introducing a cost function related to hierarchical sliding-mode surfaces for the nominal system, the original control problem is equivalently converted into an optimal control problem. To obtain this optimal control policy, the Hamilton-Jacobi-Bellman equation is solved through an adaptive dynamic programming method. Compared with conventional adaptive dynamic programming methods, the identifier-critic network architecture not only overcomes the limitation on the unknown internal dynamic but also eliminates the approximation error arising from the actor network. The weights in the critic network are tuned via the gradient descent approach and the experience replay technology, such that the persistence of excitation condition can be relaxed. Then, a compensation term containing hierarchical sliding-mode surfaces is used to offset uncertain actuator failures without the fault detection and isolation unit. Based on the Lyapunov stability theory, all states of the closed-loop nonlinear system are stable in the sense of uniformly ultimately boundedness. Finally, numerical and practical examples are given to demonstrate the effectiveness of our presented online compensation control strategy.

5.
J Colloid Interface Sci ; 664: 146-155, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460380

RESUMEN

The imbalances of storage capacity and reaction kinetics between carbonaceous cathodes and zinc (Zn) anodes restrict the widespread application of Zn-ion hybrid capacitor (ZIHC). Structure optimization is a promising strategy for carbon materials to achieve sufficient Zn2+ storage sites and satisfied ion-electron kinetics. Herein, porous graphitic carbon nanosheets (PGCN) were simply synthesized using a K3[Fe(C2O4)3]- and urea-assisted foaming strategy with polyvinylpyrrolidone as carbon precursor, followed by activation and graphitization. Sufficient pores with well-matched pore sizes (0.80-1.94 nm) distributed across the carbon nanosheets can effectively shorten mass-transfer distance, promoting accessibility to active sites. A partially graphitic carbon structure with high graphitization degree can accelerate electron transfer. Furthermore, high nitrogen doping (7.2 at.%) provides additional Zn2+ storage sites to increase storage capacity. Consequently, a PGCN-based ZIHC has an exceptional specific capacity of 181 mAh g-1 at 0.5 A g-1, superb energy density of 145 Wh kg-1, and excellent cycling ability without capacity decay over 10,000 cycles. In addition, the flexible solid-state device assembled with PGCN exhibits excellent electrochemical performances even when bent at various angles. This study proposes a straightforward and economical strategy to construct porous graphitic carbon nanosheets with enhanced storage capacity and fast reaction kinetics for the high performance of ZIHC.

6.
Glob Chall ; 7(9): 2300007, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37745823

RESUMEN

Crop production and quality safety system have the potential to nurture human health and improve environmental sustainability. Providing a growing global population with sufficient and healthy food is an immediate challenge. However, this system largely depends on the spraying of agrochemicals. Crop leaves are covered with different microstructures, exhibiting distinct hydrophilic, hydrophobic, or even superhydrophobic wetting characteristics, thus leading to various deposition difficulties of sprayed droplets. Here, the relationship between wettability and surface microstructure in different crop leaves from biological and interfacial structural perspectives is systematically demonstrated. A relational model is proposed in which complex microstructures lead to stronger leaf hydrophobicity. And adding surfactant with a faster dynamically migrating velocity and reducing droplet size can improve agrochemical precise deposition. These contribute toward highly accurate and efficient targeted applications with fewer agrochemicals use and promote sustainable models of eco-friendly agriculture systems.

7.
Cell Death Dis ; 14(8): 539, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37604811

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis. The histone H3 lysine 36 methyltransferase SET-domain-containing 2 (SETD2) has been reported to be expressed at low levels and frequently mutated in ccRCC. Ferroptosis, a form of death distinct from apoptosis and necrosis, has been reported in recent years in renal cancer. However, the relationship between SETD2 and ferroptosis in renal cancer is not clear. Here, we demonstrated that SETD2 was expressed at low levels in ccRCC and was associated with poor prognosis. Moreover, we found that knockdown of SETD2 increased lipid peroxidation and Fe2+ levels in tumor cells, thereby increasing the sensitivity of erastin, a ferroptosis inducer. Mechanistically, histone H3 lysine 36 trimethylation (H3K36me3) which was catalyzed by SETD2, interacted with the promoter of ferrochelatase (FECH) to regulate its transcription and ferroptosis-related signaling pathways. In conclusion, the presesnt study revealed that knockdown of the epigenetic molecule, SETD2, significantly increases the sensitivity of ferroptosis inducers which promotes tumor cell death, thereby indicating that SETD2 may be a potential therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Ferroptosis , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Ferroptosis/genética , Histonas/genética , Lisina , Neoplasias Renales/genética , Histona Metiltransferasas
8.
Transl Oncol ; 26: 101550, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183674

RESUMEN

BACKGROUND: F-box proteins play important roles in cell cycle and tumorigenesis. However, its prognostic value and molecular function in clear cell renal cell carcinoma (ccRCC) remain unclear. In this study, we established a survival model to evaluate the prognosis of patients with ccRCC using the F-box gene signature and investigated the function of FBXL6 in ccRCC. METHODS: Comprehensive bioinformatics analyses were used to identify differentially expressed F-box and hub genes associated with ccRCC carcinogenesis. Based on the F-box gene signature, we constructed a risk model and nomogram to predict the overall survival (OS) of patients with ccRCC and assist clinicians in decision-making. Finally, we verified the function and underlying molecular mechanisms of FBXL6 in ccRCC using CCK-8 and EdU assays, flow cytometry, and subcutaneous xenografts. RESULTS: A risk model based on FBXO39, FBXL6, FBXO1, and FBXL16 was developed. In addition, we drew a nomogram based on the risk score and clinical features to assess the prognosis of patients with ccRCC. Subsequently, we identified FBXL6 as an independent prognostic marker that was highly expressed in ccRCC cell lines. In vivo and in vitro assays revealed that the depletion of FBXL6 inhibited cell proliferation and induced apoptosis. We also demonstrated that SP1 regulated the expression of FBXL6. CONCLUSIONS: FBXL6 was first identified as a diagnostic and prognostic marker in patients with ccRCC. Loss of FBXL6 attenuates proliferation and induces apoptosis in ccRCC cells. SP1 was also found to regulate the expression of FBXL6.

9.
Front Immunol ; 13: 1080403, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36591240

RESUMEN

Background: Previous studies have identified MYBL1 as a cancer-promoting molecule in numerous types of cancer. Nevertheless, the role of MYBL in renal cancer remains unclear. Methods: Genomic and clinical data of clear cell renal cell carcinoma (ccRCC) was get from the Cancer Genome Atlas (TCGA) database. CCK8, colony formation, and 5-ethynyl-2'-deoxyuridine assay were utilized to evaluate the performance of cell proliferation. Cell apoptosis was detected using the flow cytometric analysis. The protein level of MYBL1 in different tissues was evaluated using immunohistochemistry. A machine learning algorithm was utilized to identify the prognosis signature based on MYBL1-derived molecules. Results: Here, we comprehensively investigated the role of MYBL1 in ccRCC. Here, we noticed a higher level of MYBL1 in ccRCC patients in both RNA and protein levels. Further analysis showed that MYBL1 was correlated with progressive clinical characteristics and worse prognosis performance. Biological enrichment analysis showed that MYBL1 can activate multiple oncogenic pathways in ccRCC. Moreover, we found that MYBL1 can remodel the immune microenvironment of ccRCC and affect the immunotherapy response. In vitro and in vivo assays indicated that MYBL1 was upregulated in ccRCC cells and can promote cellular malignant behaviors of ccRCC. Ultimately, an machine learning algorithm - LASSO logistics regression was utilized to identify a prognosis signature based on the MYBL1-derived molecules, which showed satisfactory prediction ability on patient prognosis in both training and validation cohorts. Conclusions: Our result indicated that MYBL1 is a novel biomarker of ccRCC, which can remodel the tumor microenvironment, affect immunotherapy response and guide precision medicine in ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Microambiente Tumoral , Humanos , Algoritmos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Neoplasias Renales/genética , Neoplasias Renales/inmunología , Neoplasias Renales/terapia , Proteínas Proto-Oncogénicas , Transactivadores , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología
10.
BMC Med Genomics ; 15(1): 204, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163033

RESUMEN

BACKGROUND: Approximately 90% of renal malignancies are RCCs (renal cell carcinomas), and the primary subtype in histology is ccRCC (clear cell RCC). In recent years, pyroptosis has been considered a kind of inflammation-related programmed cell death that participates in the invasion, metastasis, and proliferation of tumour cells, thereby influencing tumour prognosis. Nonetheless, the expression level of pyroptosis-associated genes in RCCs and their relationship with prognosis remain obscure. RESULTS: In our research, 44 regulators of pyroptosis that were differentially expressed between normal kidney and ccRCC tissues were identified. ccRCC cases were categorized into 2 subgroups according to prognostic-related DEGs (differentially expressed genes), and there was a significant difference in OS (overall survival) between them. The prognostic value of pyroptosis-associated genes was assessed as a signature based on a cohort from TCGA (The Cancer Genome Atlas). Following Cox regression with DEGs and LASSO (least absolute shrinkage and selection operator), a 6-gene signature was established, and all ccRCC cases in the cohort from TCGA were categorized into an LR (low-risk) or HR (high-risk) group (P < 0.001). In combination with clinical features, risk scores were considered a predictive factor of OS in ccRCC. KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) analyses suggest increased immunity and enrichment of genes related to immunity in the HR group. CONCLUSIONS: Our findings indicate that genes related to pyroptosis have an important role in tumour immunity and may be used to predict the prognosis of ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Pronóstico , Piroptosis/genética
11.
Sci Rep ; 12(1): 10973, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768519

RESUMEN

Renal cell carcinoma (RCC) is a kidney cancer that is originated from the lined proximal convoluted tubule, and its major histological subtype is clear cell RCC (ccRCC). This study aimed to retrospectively analyze single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, to explore the correlation among the evolution of tumor microenvironment (TME), clinical outcomes, and potential immunotherapeutic responses in combination with bulk RNA-seq data from The Cancer Genome Atlas (TCGA) database, and to construct a differentiation-related genes (DRG)-based prognostic risk signature (PRS) and a nomogram to predict the prognosis of ccRCC patients. First, scRNA-seq data of ccRCC samples were systematically analyzed, and three subsets with distinct differentiation trajectories were identified. Then, ccRCC samples from TCGA database were divided into four DRG-based molecular subtypes, and it was revealed that the molecular subtypes were significantly correlated with prognosis, clinicopathological features, TME, and the expression levels of immune checkpoint genes (ICGs). A DRG-based PRS was constructed, and it was an independent prognostic factor, which could well predict the prognosis of ccRCC patients. Finally, we constructed a prognostic nomogram based on the PRS and clinicopathological characteristics, which exhibited a high accuracy and a robust predictive performance. This study highlighted the significance of trajectory differentiation of ccRCC cells and TME evolution in predicting clinical outcomes and potential immunotherapeutic responses of ccRCC patients, and the nomogram provided an intuitive and accurate method for predicting the prognosis of such patients.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Renales/patología , Humanos , Neoplasias Renales/patología , Nomogramas , Pronóstico , RNA-Seq , Estudios Retrospectivos , Microambiente Tumoral/genética
12.
Chin J Integr Med ; 27(10): 760-766, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34319507

RESUMEN

OBJECTIVE: To investigate the molecular mechanisms underlying the effects of arsenic trioxide (As2O3) in combination with leflunomide on the hamster-to-rat heart xenotransplant. METHODS: Transplantation of LVG hamster hearts to Lewis rats was performed by anastomosis of vessels in the neck using end-to-end anastomosis with a non-suture cuff technique. Four groups of recipient rats (n=6 in each) were treated with normal saline (control), As2O3 [5 mg/(kg·day) intraperitoneally], leflunomide [5 mg/(kg·d) orally], or leflunomide [5 mg/(kg·d)+As2O3 [5 mg/(kg·d)] in combination. Donor hearts and/or rat spleens were harvested and analyzed 4 days after transplantation. Quantitative reverse-transcription polymerase chain reaction and Western blot analysis were performed to detect the expression of the nuclear factor erythroid-derived factor 2-related factor (Nrf2) and its target gene heme oxygenase-1 (HO-1), Treg cell marker fork-head Box P3 (FOXP3), apoptosis-associated proteins Bcl-2, Bax, and cleaved caspase-3. Immunohistochemical staining was used to detect the levels of inflammatory natural killer cell and macrophage infiltration, intercellular cell adhesion molecule-1 (ICAM-1) and complement C3. RESULTS: Expression of Nrf2-ARE-HO-1 signaling pathway was upregulated in heart xenografts in rats treated with As2O3 plus leflunomide compared with control rats or rats treated with either drug alone (P<0.01), and this was accompanied by an increased Treg cells in the recipient rat spleen (P<0.01). In contrast, the expressions of Bax, cleaved caspase-3, ICAM-1, and complement C3, and infiltration of inflammatory cells in the xenografts were inhibited by As2O3 plus leflunomide treatment (P<0.01). CONCLUSION: Combination treatment with As2O3 and leflunomide protected hamster heart-xenografts in recipient rats.


Asunto(s)
Trasplante de Corazón , Factor 2 Relacionado con NF-E2 , Animales , Trióxido de Arsénico , Cricetinae , Hemo-Oxigenasa 1/metabolismo , Xenoinjertos , Leflunamida , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Endogámicas Lew , Transducción de Señal
13.
ACS Appl Mater Interfaces ; 13(44): 52374-52384, 2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714617

RESUMEN

Bladder cancer (BCa) is the most costly solid tumor owing to its high recurrence. Relapsed cancer is known to acquire chemoresistant features after standard intravesical chemotherapy. This cancer state is vulnerable to ferroptosis, which occurs when lipid peroxides generated by iron metabolism accumulate to lethal levels. Increasing the labile iron pool (LIP) by iron oxide nanoparticles (IONPs) promises to inhibit chemoresistant BCa (CRBCa), but systemically administered IONPs do not sufficiently accumulate at the tumor site. Therefore, their efficacy is weakened. Here, we present a three-tier delivery strategy through a mucoadhesive hydrogel platform conveying hyaluronic acid-coated IONPs (IONP-HA). When instilled, the hydrogel platform first adhered to the interface of the tumor surface, sustainably releasing IONP-HA. Subsequently, the tumor stiffness and interstitial fluid pressure were reduced by photothermal therapy, promoting IONP-HA diffusion into the deep cancer tissue. As CRBCa expressed high levels of CD44, the last delivery tier was achieved through antibody-mediated endocytosis to increase the LIP, ultimately inducing ferroptosis. This three-tiered strategy delivered the IONPs stepwise from anatomical to cellular levels and increased the iron content by up to 50-fold from that of systematic administration, which presents a potential regimen for CRBCa.

14.
J Cancer ; 9(24): 4618-4626, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588245

RESUMEN

Background: This study investigated the biological function of the gene MAN1C1 α-mannosidase in renal cell carcinoma. It has been reported that MAN1C1 is probably a potential tumor suppressor gene in Wilms. However, the role of MAN1C1 in human clear cell renal cell carcinoma (ccRCC) has not been reported. Methods: In this study, MAN1C1 gene over-expression was used to transfect human renal cancer cell lines 786-O and OS-RC-2 to study apoptosis and the underlying mechanisms which influence epithelial-mesenchymal transition. Results: MAN1C1 was down-regulated in ccRCC and related to the clinicopathological factors and prognosis of ccRCC. We revealed that over-expression MAN1C1 showed anti-tumor effect by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8) assay, cell cycle analysis, and western blot analysis. What's more, MAN1C1 over-expression remarkably increased the ratio of Bax/Bcl-2 and inhibited epithelial-mesenchymal transition by increasing the expression of E-CA. In addition, the ratio of Bax/Bcl-2 and E-CA were also increased in MAN1C1 gene over-expression renal cancer cells compared with the control cells. Conclusion: We find that re-expression of silenced MAN1C1 in ccRCC cell lines inhibited cell viability, colony formation, induced apoptosis, suppressed cell invasion and migration. In conclusion, MAN1C1 is a novel functional tumor suppressor in renal carcinogenesis. This is the first time that the function of MAN1C1 gene has been verified in the renal tumor tissue so far.

16.
Bioresour Technol ; 119: 339-48, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22750501

RESUMEN

The fluidization characteristics of binary mixtures containing tobacco stem (TS) and cation exchange resin (a substitute for coal) were studied in a rectangular bed with the cross-section area of 0.3 × 0.025 m(2). The presence of herbaceous biomass particles and their unique properties such as low density and high aspect ratio resulted in different fluidization behaviors. Three fluidization velocities, i.e. initial, minimum and full fluidization velocities, were observed as the TS mass fraction increased from 7% to 20%, and four hydrodynamic stages were experienced, including the static, segregation, transition and mixing stages, with increasing operational gas velocities. The results suggest that the operational gas velocity should be in the range of 2.0-5.0 times of the minimum fluidization velocity of the binary mixtures, and less than 7% TS mass fraction should be used in an existing bubbling fluidized bed. Higher TS fraction inclusion requires the introduction of central jet gas to improve the mixing effect.


Asunto(s)
Carbón Mineral , Conservación de los Recursos Energéticos/métodos , Calefacción/instrumentación , Incineración/instrumentación , Residuos Industriales/prevención & control , Nicotiana/química , Eliminación de Residuos/instrumentación , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Modelos Químicos , Soluciones
17.
J Colloid Interface Sci ; 678(Pt A): 152-163, 2025 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-39186895

RESUMEN

Seeking effective ways to maintain cellular homeostasis is crucial to the survival of organisms when they encounter osmotic stress. Glycine betaine (GB) is a widely generated natural osmolyte, but its endogenous production and action are limited. Herein, a kind of nonionic surfactant dodecyl-ß-d-glucopyranoside (DG) and a common polymer polyethylene glycol (PEG) are proven to have the ability to enhance the osmotic stress (induced by sugar concentration changes) tolerance of cell and organism models, those are giant unilamellar vesicles (GUVs) and gram-negative Escherichia coli. DG or PEG only induces small size decrease and certain shape change of GUVs. Importantly, DG or PEG at the concentration 100 times lower than that of GB effectively increases the survival rate of bacteria under both hypoosmotic and hyperosmotic conditions. This intriguing result is attributed to the insertion of DG or adsorption of PEG in the lipid bilayer membrane, leading to enhanced membrane permeability. These exogenous substances can replace GB to facilely and highly efficiently augment adaptation of organisms to osmotic stress.


Asunto(s)
Escherichia coli , Membrana Dobles de Lípidos , Presión Osmótica , Polietilenglicoles , Liposomas Unilamelares , Presión Osmótica/efectos de los fármacos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Escherichia coli/efectos de los fármacos , Polietilenglicoles/química , Polietilenglicoles/farmacología , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismo , Tensoactivos/química , Tensoactivos/farmacología , Glucósidos/química , Glucósidos/farmacología , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA