RESUMEN
The third and fourth weeks of gestation in primates are marked by several developmental milestones, including gastrulation and the formation of organ primordia. However, our understanding of this period is limited due to restricted access to in vivo embryos. To address this gap, we developed an embedded 3D culture system that allows for the extended ex utero culture of cynomolgus monkey embryos for up to 25 days post-fertilization. Morphological, histological, and single-cell RNA-sequencing analyses demonstrate that ex utero cultured monkey embryos largely recapitulated key events of in vivo development. With this platform, we were able to delineate lineage trajectories and genetic programs involved in neural induction, lateral plate mesoderm differentiation, yolk sac hematopoiesis, primitive gut, and primordial germ-cell-like cell development in monkeys. Our embedded 3D culture system provides a robust and reproducible platform for growing monkey embryos from blastocysts to early organogenesis and studying primate embryogenesis ex utero.
Asunto(s)
Embrión de Mamíferos , Desarrollo Embrionario , Animales , Macaca fascicularis , Blastocisto , Organogénesis , PrimatesRESUMEN
Maintaining intracellular redox balance is essential for the survival, antibody secretion, and mucosal immune homeostasis of immunoglobulin A (IgA) antibody-secreting cells (ASCs). However, the relationship between mitochondrial metabolic enzymes and the redox balance in ASCs has yet to be comprehensively studied. Our study unveils the pivotal role of mitochondrial enzyme PCK2 in regulating ASCs' redox balance and intestinal homeostasis. We discover that PCK2 loss, whether globally or in B cells, exacerbates dextran sodium sulphate (DSS)-induced colitis due to increased IgA ASC cell death and diminished antibody production. Mechanistically, the absence of PCK2 diverts glutamine into the TCA cycle, leading to heightened TCA flux and excessive mitochondrial reactive oxygen species (mtROS) production. In addition, PCK2 loss reduces glutamine availability for glutathione (GSH) synthesis, resulting in a decrease of total glutathione level. The elevated mtROS and reduced GSH expose ASCs to overwhelming oxidative stress, culminating in cell apoptosis. Crucially, we found that the mitochondria-targeted antioxidant Mitoquinone (Mito-Q) can mitigate the detrimental effects of PCK2 deficiency in IgA ASCs, thereby alleviating colitis in mice. Our findings highlight PCK2 as a key player in IgA ASC survival and provide a potential new target for colitis treatment.
Asunto(s)
Colitis , Homeostasis , Mitocondrias , Estrés Oxidativo , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/inmunología , Ratones , Mitocondrias/metabolismo , Inmunoglobulina A/metabolismo , Sulfato de Dextran , Ratones Noqueados , Células Productoras de Anticuerpos/inmunología , Células Productoras de Anticuerpos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Glutatión/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Intestinos/inmunología , Apoptosis , Modelos Animales de EnfermedadRESUMEN
Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.
Asunto(s)
Antígenos CD36 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Humanos , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Ácidos Grasos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-akt , Antígenos CD36/genéticaRESUMEN
Objective: This study aimed to analyze the difference between non-ligation and traditional ligation techniques for papillary thyroid micro-carcinoma (PTMC) patients. Methods: Patients undergoing thyroidectomy in the Department of General Surgery, Ruijin Hospital, affiliated with Shanghai Jiao Tong University, Lu Wan Branch, were retrospectively enrolled. The gender, age, operation method, operation duration, tumor size, size of thyroidectomy specimen, postoperative bleeding, drainage volume on the first postoperative day, preoperative and postoperative levels of parathyroid hormone (PTH), and blood calcium were collected. Results: Compared with the traditional ligation technique, the non-ligation technique significantly shortened the operation time (69.36 ± 1.38 vs. 82.72 ± 2.12, P < .0001) and reached less variation of the serum calcium (2.32 ± 0.01 vs 2.28 ± 0.01, P < .001) and PTH (26.58 ± 0.08 vs 22.01 ± 1.04, P < .05) on the first postoperative day, and the above biochemical indicators returned to normal 3 weeks after surgery. The PTH in the No-ligation technique group was 7.20± 1.99, which was significantly lower than that in the Traditional ligation group (20.78± 3.78) (P < .01). Conclusion: No-ligation technique can significantly reduce the operation time in thyroidectomy but may temporarily affect the levels of parathyroid hormone and blood calcium, and the above changes returned to normal 3 weeks after surgery. These results highlighted that No-ligation technique can benefit patients and will be a favorable treatment method.
Asunto(s)
Neoplasias de la Tiroides , Tiroidectomía , Humanos , Tiroidectomía/métodos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Neoplasias de la Tiroides/cirugía , Ligadura/métodos , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/sangre , Tempo Operativo , Hormona Paratiroidea/sangreRESUMEN
Premature ovarian insufficiency (POI) is a clinical syndrome that declines ovarian function in women. Berberine (BBR) is a compound with anti-inflammatory, antioxidant, and anti-apoptotic activities. However, the role of BBR on POI is still unknown. In this study, we investigated the role of BBR on ovarian function decline by establishing a POI mouse model using cyclophosphamide (CTX) and busulfan (BU). Our results showed that POI was attenuated by BBR, which was evidenced by enhanced body weight and ovarian weight, improved morphology of ovary, increased the number of healthy follicles, decreased the production of atretic follicles and restored serum hormone levels, including estradiol, anti-Müllerian hormone and follicle-stimulating hormone. In addition, we showed that germ cell function markers, mouse vasa homologue (MVH) and octamer-binding transcription factor 4 (OCT4) were enhanced by BBR, at both protein and mRNA levels. Furthermore, our results revealed that BBR inhibited inflammation and oxidative stress by reducing nuclear factor kappa B (NF-κB) and enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Taken together, we demonstrate that BBR can effectively improve ovarian function in POI mice, which is mainly mediated by reducing oxidative stress and inflammatory response. Our study also provides new strategy for POI treatment.
Asunto(s)
Berberina , Insuficiencia Ovárica Primaria , Ratones , Femenino , Humanos , Animales , Busulfano/efectos adversos , Berberina/farmacología , Berberina/uso terapéutico , Insuficiencia Ovárica Primaria/inducido químicamente , Insuficiencia Ovárica Primaria/prevención & control , Insuficiencia Ovárica Primaria/metabolismo , Ciclofosfamida/toxicidad , EstradiolRESUMEN
Biological networks are known to be highly modular, and the dysfunction of network modules may cause diseases. Defining the key modules from the omics data and establishing the classification model is helpful in promoting the research of disease diagnosis and prognosis. However, for applying modules in downstream analysis such as disease states discrimination, most methods only utilize the node information, and ignore the node interactions or topological information, which may lead to false positives and limit the model performance. In this study, we propose an omics data analysis method based on feature linear relationship and graph convolutional network (LCNet). In LCNet, we adopt a way of applying the difference of feature linear relationships during disease development to characterize physiological and pathological changes and construct the differential linear relation network, which is simple and interpretable from the perspective of feature linear relationship. A greedy strategy is developed for searching the highly interactive modules with a strong discrimination ability. To fully utilize the information of the detected modules, the personalized sub-graphs for each sample based on the modules are defined, and the graph convolutional network (GCN) classifiers are trained to predict the sample labels. The experimental results on public datasets show the superiority of LCNet in classification performance. For Breast Cancer metabolic data, the identified metabolites by LCNet involve important pathways. Thus, LCNet can identify the module biomarkers by feature linear relationship and a greedy strategy, and label samples by personalized sub-graphs and GCN. It provides a new manner of utilizing node (molecule) information and topological information in the defined modules for better disease classification.
Asunto(s)
Análisis de Datos , Proyectos de InvestigaciónRESUMEN
Parkinson's disease (PD) is a progressive neurodegenerative disorder with a complex etiology. Neuroinflammation and oxidative stress are important factors driving the progression of PD. It has been reported that 1,3,4-oxadiazole and flavone derivatives have numerous biological functions, especially in the aspect of anti-inflammatory and antioxidant. Based on the strategy of pharmacodynamic combination, we introduced 1,3,4-oxadiazole moiety into the flavonoid backbone, designed and synthesized a series of novel flavonoid 1,3,4-oxadiazole derivatives. Further, we evaluated their toxicity, anti-inflammatory and antioxidant activities using BV2 microglia. Following a comprehensive analysis, compound F12 showed the best pharmacological activity. In vivo, we induced the classical PD animal model by intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into C57/BL6J mice. Our results showed that compound F12 ameliorated MPTP-induced dysfunction in mice. Further, compound F12 reduced oxidative stress by promoting the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inflammatory response by inhibiting the nuclear translocation of nuclear factor-κB (NF-κB) in vivo and in vitro. Meanwhile, compound F12 inhibited the mitochondrial apoptotic pathway to rescue microglia inflammation-mediated loss of dopaminergic neurons. In conclusion, compound F12 reduced oxidative stress and inflammation and could be as a potential agent for PD treatment.
Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Antioxidantes/farmacología , Flavonoides/farmacología , Flavonoides/uso terapéutico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Transducción de Señal , Inflamación/tratamiento farmacológico , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.
Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fibrosis/tratamiento farmacológico , Riñón/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos CD36/efectos de los fármacosRESUMEN
Rolling contact fatigue (RCF) produced by wheel-rail interaction is now considered to be a critical factor that causes failure. Throughout this work, induced scanning thermography (IST) for detecting RCF defects at different depths is investigated. The original thermal sequences could not utilize the features at the heat dissipation stage; thus, a data reconstruction method, including principal component analysis (PCA) and Tucker factorization, was employed to extract the spatial and time patterns. In addition, detectability was evaluated across a range of speed studies. The Tucker-PCA combination algorithms obtained defects with improved quality, showing a clear boundary over the velocity range of 1-4km/h, which dramatically suppressed background noise. A unique gradient response characteristic in the cooling phase was summarized and utilized through experimental verification in order to recognize defect width.
RESUMEN
Heart failure is one of the diseases with the highest mortality in the world, and inflammation is the main cause for its occurrence and development. The stilbene skeleton of resveratrol has been shown to have excellent anti-inflammatory and antioxidant activities. In order to continue our research on dihydropyrazole derivatives, a series of novel (E)-4-methyl-2-(3-phenyl-5-(4-styrylphenyl)-4,5-dihydro-1H-pyrazol-1-yl)thiazole derivatives were designed and synthesized according to the principle of molecular hybridization for evaluation their anti-inflammatory and antioxidation activities. We screened their anti-inflammatory abilities in RAW264.7 cells and analyzed the preliminary structure-activity relationship, and explored the related molecular mechanisms. We further used doxorubicin (DOX)-induced heart failure model to explore the protective role of our compound in vivo. Our results showed that compound F5 exhibited the most potent activity and was superior to the positive control. It reversed the expression of lipopolysaccharide (LPS)-regulated inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and superoxide dismutase 1 (SOD1) in RAW264.7 cells. In addition, compound F5 also inhibited DOX-induced inflammation and reactive oxygen species by modulating the p38/nuclear factor kappa B (NF-κB) signaling pathway in H9C2 cells. In vivo results showed that compound F5 ameliorated DOX-caused damage, such as reduced left ventricular ejection fraction, severe inflammation, fibrosis and oxidative stress in heart. In conclusion, compound F5 could be used as a promising agent for the treatment of heart failure through attenuating oxidative stress and inflammation.
Asunto(s)
Insuficiencia Cardíaca , Estilbenos , Ratones , Animales , FN-kappa B/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Volumen Sistólico , Óxido Nítrico/metabolismo , Función Ventricular Izquierda , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal , Antiinflamatorios/efectos adversos , Lipopolisacáridos/efectos adversos , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo , Células RAW 264.7 , Ciclooxigenasa 2/metabolismo , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/tratamiento farmacológicoRESUMEN
BACKGROUND: Copy number variation (CNV) is an important source of genetic variation that has a significant influence on phenotypic diversity, economically important traits and the evolution of livestock species. In this study, the genome-wide CNV distribution characteristics of 32 fine-wool sheep from three breeds were analyzed using resequencing. RESULTS: A total of 1,747,604 CNVs were detected in this study, and 7228 CNV regions (CNVR) were obtained after merging overlapping CNVs; these regions accounted for 2.17% of the sheep reference genome. The average length of the CNVRs was 4307.17 bp. "Deletion" events took place more frequently than "duplication" or "both" events. The CNVRs obtained overlapped with previously reported sheep CNVRs to variable extents (4.39-55.46%). Functional enrichment analysis showed that the CNVR-harboring genes were mainly involved in sensory perception systems, nutrient metabolism processes, and growth and development processes. Furthermore, 1855 of the CNVRs were associated with 166 quantitative trait loci (QTL), including milk QTLs, carcass QTLs, and health-related QTLs, among others. In addition, the 32 fine-wool sheep were divided into horned and polled groups to analyze for the selective sweep of CNVRs, and it was found that the relaxin family peptide receptor 2 (RXFP2) gene was strongly influenced by selection. CONCLUSIONS: In summary, we constructed a genomic CNV map for Chinese indigenous fine-wool sheep using resequencing, thereby providing a valuable genetic variation resource for sheep genome research, which will contribute to the study of complex traits in sheep.
Asunto(s)
Variaciones en el Número de Copia de ADN , Lana , Animales , China , Mapeo Cromosómico , Humanos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Ovinos/genéticaRESUMEN
BACKGROUND: The quality and yield of wool determine the economic value of the fine-wool sheep. Therefore, discovering markers or genes relevant to wool traits is the cornerstone for the breeding of fine-wool sheep. In this study, we used the Illumina HiSeq X Ten platform to re-sequence 460 sheep belonging to four different fine-wool sheep breeds, namely, Alpine Merino sheep (AMS), Chinese Merino sheep (CMS), Aohan fine-wool sheep (AHS) and Qinghai fine-wool sheep (QHS). Eight wool traits, including fiber diameter (FD), fiber diameter coefficient of variance (FDCV), fiber diameter standard deviation (FDSD), staple length (SL), greasy fleece weight (GFW), clean wool rate (CWR), staple strength (SS) and staple elongation (SE) were examined. A genome-wide association study (GWAS) was performed to detect the candidate genes for the eight wool traits. RESULTS: A total of 8.222 Tb of raw data was generated, with an average of approximately 8.59X sequencing depth. After quality control, 12,561,225 SNPs were available for analysis. And a total of 57 genome-wide significant SNPs and 30 candidate genes were detected for the desired wool traits. Among them, 7 SNPs and 6 genes are related to wool fineness indicators (FD, FDCV and FDSD), 10 SNPs and 7 genes are related to staple length, 13 SNPs and 7 genes are related to wool production indicators (GFW and CWR), 27 SNPs and 10 genes associated with staple elongation. Among these candidate genes, UBE2E3 and RHPN2 associated with fiber diameter, were found to play an important role in keratinocyte differentiation and cell proliferation. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results, revealed that multitude significant pathways are related to keratin and cell proliferation and differentiation, such as positive regulation of canonical Wnt signaling pathway (GO:0090263). CONCLUSION: This is the first GWAS on the wool traits by using re-sequencing data in Chinese fine-wool sheep. The newly detected significant SNPs in this study can be used in genome-selective breeding for the fine-wool sheep. And the new candidate genes would provide a good theoretical basis for the fine-wool sheep breeding.
Asunto(s)
Estudio de Asociación del Genoma Completo , Lana , Animales , China , Fenotipo , Ovinos/genética , Oveja DomésticaRESUMEN
Searching for membrane-active synthetic analogues that are structurally simple yet functionally comparable to natural channel proteins has been of central research interest in the past four decades, yet custom design of the ion transport selectivity still remains a grand challenge. Here we report on a suite of buckyball-based molecular balls (MBs), enabling transmembrane ion transport selectivity to be custom designable. The modularly tunable MBm-Cn (m = 4-7; n = 6-12) structures consist of a C60-fullerene core, flexible alkyl linkers Cn (i.e., C6 for n-C6H12 group), and peripherally aligned benzo-3m-crown-m ethers (i.e., m = 4 for benzo-12-crown-4) as ion-transporting units. Screening a matrix of 16 such MBs, combinatorially derived from four different crown units and four different Cn linkers, intriguingly revealed that their transport selectivity well resembles the intrinsic ion binding affinity of the respective benzo-crown units present, making custom design of the transport selectivity possible. Specifically, MB4s, containing benzo-12-crown-4 units, all are Li+-selective in transmembrane ion transport, with the most active MB4-C10 exhibiting an EC50(Li+) value of 0.13 µM (corresponding to 0.13 mol % of the lipid present) while excluding all other monovalent alkali-metal ions. Likewise, the most Na+ selective MB5-C8 and K+ selective MB6-C8 demonstrate high Na+/K+ and K+/Na+ selectivity values of 13.7 and 7.8, respectively. For selectivity to Rb+ and Cs+ ions, the most active MB7-C8 displays exceptionally high transport efficiencies, with an EC50(Rb+) value of 105 nM (0.11 mol %) and an EC50(Cs+) value of 77 nM (0.079 mol %).
RESUMEN
BACKGROUND: NASH is one of the fastest growing liver diseases that leads to severe steatosis, inflammation and ultimately liver injury. However, the pathophysiological mechanisms of NASH remain unclear and pharmacological treatment against the disease is unavailable currently. Ferroptosis is a non-apoptotic form of cell death induced by iron-dependent lipid peroxidation. Since NASH progression is accompanied by massive lipid accumulation, which generates lipotoxic species, we investigated the role of ferroptosis in NASH progression. METHOD: Mice were fed on MCD-diet to mimic NASH progression and gene expression in liver was analysed by RNA-seq. The occurrence of hepatic ferroptosis was measured by lipid ROS level, electron microscopy and in vivo PI staining. The beneficial effects of ferroptosis inhibitors on NASH was evaluated by liver pathology analysis. The mechanism of lipid ROS induced lipid droplets accumulation was investigated by in vitro cell culture. RESULTS: RNA-seq analysis suggested that elevated arachidonic acid metabolism promotes ferroptosis in MCD-diet fed mouse livers, which was further demonstrated by lipid ROS accumulation, morphological change of mitochondria and increased cell death. Iron accumulation was detected in the liver and the serum of MCD-fed mice. Scavenging of ferroptosis-linked lipid peroxides reduced lipid accumulation both in vivo and in vitro. Importantly, ferroptosis inhibitors alleviated MCD-diet induced inflammation, fibrogenesis and liver injury. Finally, lipid ROS promotes liver steatosis by boosting lipid droplets formation. CONCLUSION: Our results demonstrate an important role of ferroptosis in the progression of MCD-diet induced NASH and suggest that ferroptosis may serve as a therapeutic target for NASH treatment.
Asunto(s)
Deficiencia de Colina , Ferroptosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Colina , Dieta , Hígado , Metionina , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiologíaRESUMEN
Siamese network-based trackers consider tracking as features cross-correlation between the target template and the search region. Therefore, feature representation plays an important role for constructing a high-performance tracker. However, all existing Siamese networks extract the deep but low-resolution features of the entire patch, which is not robust enough to estimate the target bounding box accurately. In this work, to address this issue, we propose a novel high-resolution Siamese network, which connects the high-to-low resolution convolution streams in parallel as well as repeatedly exchanges the information across resolutions to maintain high-resolution representations. The resulting representation is semantically richer and spatially more precise by a simple yet effective multi-scale feature fusion strategy. Moreover, we exploit attention mechanisms to learn object-aware masks for adaptive feature refinement, and use deformable convolution to handle complex geometric transformations. This makes the target more discriminative against distractors and background. Without bells and whistles, extensive experiments on popular tracking benchmarks containing OTB100, UAV123, VOT2018 and LaSOT demonstrate that the proposed tracker achieves state-of-the-art performance and runs in real time, confirming its efficiency and effectiveness.
RESUMEN
In the last decade, research studies on parking planning mainly focused on path planning rather than trajectory planning. The results of trajectory planning are more instructive for a practical parking process. Therefore, this paper proposes a trajectory planning method in which the optimal autonomous valet parking (AVP) trajectory is obtained by solving an optimal control problem. Additionally, a vehicle kinematics model is established with the consideration of dynamic obstacle avoidance and terminal constraints. Then the parking trajectory planning problem is modeled as an optimal control problem, while the parking time and driving distance are set as the cost function. The homotopic method is used for the expansion of obstacle boundaries, and the Gauss pseudospectral method (GPM) is utilized to discretize this optimal control problem into a nonlinear programming (NLP) problem. In order to solve this NLP problem, sequential quadratic programming is applied. Considering that the GPM is insensitive to the initial guess, an online calculation method of vertical parking trajectory is proposed. In this approach, the offline vertical parking trajectory, which is calculated and stored in advance, is taken as the initial guess of the online calculation. The selection of an appropriate initial guess is based on the actual starting position of parking. A small parking lot is selected as the verification scenario of the AVP. In the validation of the algorithm, the parking trajectory planning is divided into two phases, which are simulated and analyzed. Simulation results show that the proposed algorithm is efficient in solving a parking trajectory planning problem. The online calculation time of the vertical parking trajectory is less than 2 s, which meets the real-time requirement.
RESUMEN
Dams and sluices break down the river continuum, alter the river hydrological regime, and intercept the migration processes of nutrients and pollutants. The regulation of dams and sluices will have great impacts on water quality characteristics in the river basin. In this study, variable fuzzy pattern recognition model (VFPR), principal component analysis/factor analysis (PCA/FA), and the absolute principal component score-multiple linear regression (APCS-MLR) were used to assess the water quality and identify the potential pollution sources in a highly regulated river of Northeast China. A set of water quality variables at three stations were measured from January 2015 to August 2017. The water quality assessment results showed that there were spatial and temporal variations of water quality and the total nitrogen (TN) and fecal coliforms (F. coli) were the major pollution factors of the study river section. Four pollution sources, including industrial effluent source, domestic sewage source, meteorological factor and atmospheric deposition source, and agricultural non-point source, were identified in dry and wet seasons using the PCA/FA method. The APCS-MLR results showed that the industrial effluent source was the main pollution source in dry seasons and had a decrease in wet seasons. While the mean contribution of the domestic sewage source had an increase in wet seasons, influenced by the sewage overflow and the flushing of pollutants during the extreme precipitation, the construction of dams decreased the flow obviously in wet seasons and increased in dry seasons. The increase in pollutants caused by storm runoff and the reduction of dilution water in the river channel could be the main reason for the water quality degradation in wet seasons.
Asunto(s)
Ríos , Contaminantes Químicos del Agua , Calidad del Agua , China , Monitoreo del Ambiente , Estaciones del Año , Contaminación del AguaRESUMEN
Previous studies suggest that specific binding to the complex consisting of fibroblast growth factor receptor-1 (FGFR1) and the coreceptor beta-Klotho (KLB) is the premise for human FGF19 and FGF21 activating the downstream signaling cascades, and regulating the metabolic homeostasis. However, it was found that human FGF21 loses its ability to bind to FGFR1-KLB after iodination with Na125 I and chloramine T, whereas human FGF19 retained its affinity for FGFR1-KLB even after iodination. The molecular mechanisms underlying these differences remained elusive. In this study, we first demonstrated that an intramolecular disulfide bond was formed between cysteine-102 and cysteine-121 in FGF21, implying that the oxidation of the cysteine to cysteic acid, which may interfere with the active conformation of FGF21, did not occur during the iodination procedures, and thus ruled out the possibility of the two conserved cysteine residues mediating the loss of FGF21 binding affinity to FGFR1-KLB upon iodination. Site-directed mutagenesis and molecular modeling were further applied to determine the residue(s) responsible for the loss of FGFR1-KLB affinity. The results showed that mutation of a single tyrosine-207, but not the other five tyrosine residues in FGF21, to a phenylalanine retained the FGFR1-KLB affinity of FGF21 even after iodination, whereas replacing the corresponding phenylalanine residue with tyrosine in FGF19 did not alter its binding affinity to FGFR1-KLB, but decreased the receptor binding ability of the iodinated protein, suggesting that tyrosine-207 is the crucial amino acid responsible for the loss of specifying FGFR1-KLB affinity of the iodinated FGF21.
Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Proteínas de la Membrana/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Aminoácidos/efectos de los fármacos , Aminoácidos/genética , Línea Celular , Cloraminas/farmacología , Factores de Crecimiento de Fibroblastos/efectos de los fármacos , Halogenación , Homeostasis/genética , Humanos , Proteínas Klotho , Oxidación-Reducción/efectos de los fármacos , Fenilalanina/genética , Unión Proteica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Yoduro de Sodio/farmacología , Compuestos de Tosilo/farmacología , Tirosina/efectos de los fármacosRESUMEN
Fibroblast growth factor-2 (FGF2) is a protein ligand, which exerts essential roles in development, angiogenesis, and tumor progression via activation of the downstream signaling cascades. Accumulating evidence has demonstrated that FGF2 is involved in the progression of ovarian cancer, providing a novel potential target for ovarian cancer therapy. In this study, we showed that FGF2 is significantly increased in ovarian tumors, and is negatively associated with the overall survival of ovarian cancer by database analysis. A short peptide obtained from a heptapeptide phage display library suppressed FGF2-induced proliferation, migration, and invasion of the p53-null epithelial ovarian cancer (EOC) cells. Further investigations revealed that the short peptide antagonized the effects of FGF2 on G0/G1 to S cell phase promotion, cyclin D1 expression, and MAPK and Akt signaling activation, which might contribute to the mechanism underlying the inhibitory effects of the short peptide on the aggressive phenotype of the ovarian cancer cells triggered by FGF2. Moreover, the short peptide might have the potentials of reversing FGF2-induced resistance to the doxorubicin via downregulation of the antiapoptotic proteins and counteracting of the antiapoptotic effects of FGF2 on p53-null EOC cells. Taken together, the short peptide targeting FGF2 may provide a novel strategy for improving the therapeutic efficiency in a subset of EOC.
Asunto(s)
Carcinoma Epitelial de Ovario/tratamiento farmacológico , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Péptidos/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Carcinoma Epitelial de Ovario/genética , Carcinoma Epitelial de Ovario/mortalidad , Carcinoma Epitelial de Ovario/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Estimación de Kaplan-Meier , Neoplasias Ováricas/genética , Neoplasias Ováricas/mortalidad , Neoplasias Ováricas/patología , Biblioteca de Péptidos , Fase S/efectos de los fármacos , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Stormflow runoff is an important non-point source of pollution in drinking water reservoirs. Storm runoff is usually very turbid and contains a high concentration of organic matter, therefore affecting water quality when it enters reservoirs. In order to investigate the impact of storm runoff on spatial-temporal variation and stratification of water quality during this rainstorm event, the inflow process of the storm runoff was studied through a combination of field investigation and simulation using the Delft3D-Flow model. Water samples were collected from Biliuhe Reservoir at four different periods: before storm runoff, storm runoff flood peak period, 1 week after storm runoff, and 5 weeks after storm runoff. The results showed that the input of storm runoff resulted in a significant increase in the nitrogen (N) and phosphorus (P) in the reservoir water, especially in the reservoir entrance. The concentrations of total nitrogen (TN) and total phosphorus (TP) gradually decreased after the flood peak period; however, the average concentrations of TN and TP in the entire reservoir remained higher than those before the storm runoff levels for an extended duration. The storm runoff will greatly contribute to the contamination of water quality in a reservoir, and the water quality cannot be quickly restored by self-purification in the short term. During the flood peak period, under the influence of density current, the electrical conductivity (EC) and turbidity increased significantly in the water depth of 10-15 m, so that the reservoir water had obvious stratification between 10 and 15 m. The form of pollutants in storm runoff was mostly in particle phosphorus. Total particulate phosphorus (TPP) concentration was 0.015 ± 0.011 mg/L, accounting for 44.12% of total phosphorus (TP) concentration in storm runoff flood peak period. The process of a rainstorm caused runoff, which carried high levels of turbidity, particulate phosphorus, and organic matter. The storm runoff disrupts the stratification of the reservoir water. In terms of vertical distribution, the turbidity in the reservoir area increased to 73.75 NTU. Therefore, the occurrence of significant turbidity density flow in the reservoir is frequently accompanied by intense rainfall events. Gaining insights into the impact of storm runoff on the vertical distribution of reservoir turbidity can help managers in selecting an appropriate inlet height to mitigate high turbidity outflow.