Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 257: 119267, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38815718

RESUMEN

Natural pyrethrins are widely used in agriculture because of their good insecticidal activity. Meanwhile, natural pyrethrins play an important role in the safety evaluation of pyrethroids as precursors for structural development of pyrethroid insecticides. However, there are fewer studies evaluating the neurological safety of natural pyrethrins on non-target organisms. In this study, we used SH-SY5Y cells and zebrafish embryos to explore the neurotoxicity of natural pyrethrins. Natural pyrethrins were able to induce SH-SY5Y cells damage, as evidenced by decreased viability, cycle block, apoptosis and DNA damage. The apoptotic pathway may be related to the involvement of mitochondria and the results showed that natural pyrethrins induced a rise in Capase-3 viability, Ca2+ overload, a decrease in adenosine triphosphate (ATP) and a collapse of mitochondrial membrane potential in SH-SY5Y cells. Natural pyrethrins may mediate DNA damage in SH-SY5Y cells through oxidative stress. The results showed that natural pyrethrins induced an increase in reactive oxygen species (ROS) levels, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and catalase (CAT) activity, and induced a decrease in glutathione peroxidase (GPx) activity in SH-SY5Y cells. In vivo, natural pyrethrins induced developmental malformations in zebrafish embryos, which were mainly characterized by pericardial edema and yolk sac edema. Meanwhile, the results showed that natural pyrethrins induced damage to the Huc-GFP axis and disturbed lipid metabolism in the head of zebrafish embryos. Further results showed elevated ROS levels and apoptosis in the head of zebrafish embryos, which corroborated with the results of the cell model. Finally, the results of mRNA expression assay of neurodevelopment-related genes indicated that natural pyrethrins exposure interfered with their expression and led to neurodevelopmental damage in zebrafish embryos. Our study may raise concerns about the neurological safety of natural pyrethrins on non-target organisms.


Asunto(s)
Embrión no Mamífero , Piretrinas , Pez Cebra , Animales , Pez Cebra/embriología , Piretrinas/toxicidad , Embrión no Mamífero/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Insecticidas/toxicidad , Daño del ADN/efectos de los fármacos , Línea Celular Tumoral , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
2.
J Hazard Mater ; 477: 135376, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39111175

RESUMEN

Avermectin is a highly effective insecticide that has been widely used in agriculture since the 1990s. In recent years, the safety of avermectin for non-target organisms has received much attention. The vasculature is important organs in the body and participate in the composition of other organs. However, studies on the vascular safety of avermectin are lacking. The vasculature of zebrafish larvae is characterized by ease of observation and it is a commonly used model for vascular studies. Therefore, zebrafish larvae were used to explore the potential risk of avermectin on the vasculature. The results showed that avermectin induced vascular damage throughout the body of zebrafish larvae, including the head, eyes, intestine, somite, tail and other vasculature. The main forms of damage are reduction in vascular diameter, vascular area and vascular abundance. Meanwhile, avermectin induced a decrease in the number of endothelial cells and apoptosis within the vasculature. In addition, vascular damage may be related to impairment of mitochondrial function and mitochondria-mediated apoptosis. Finally, exploration of the molecular mechanisms revealed abnormal alterations in the expression of genes related to the VEGF/Notch signaling pathway. Therefore, the VEGF/Notch signaling pathway may be an important mechanism for avermectin-induced vascular damage in zebrafish larvae. This study demonstrates the vascular toxicity of avermectin in zebrafish larvae and reveals the possible molecular mechanism, which would hopefully draw more attention to the safety of avermectin in non-target organisms.


Asunto(s)
Apoptosis , Ivermectina , Larva , Mitocondrias , Receptores Notch , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Ivermectina/análogos & derivados , Ivermectina/toxicidad , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Larva/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Receptores Notch/metabolismo , Insecticidas/toxicidad , Vasos Sanguíneos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA