Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 633
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7959): 139-146, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37076617

RESUMEN

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kß isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kß activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kß led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kß inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kß inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kß controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kß inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.


Asunto(s)
Evasión Inmune , Neoplasias Mamarias Animales , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasa , Animales , Ratones , Inmunoterapia , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Transducción de Señal , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/inmunología , Neoplasias Mamarias Experimentales/enzimología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/inmunología
2.
Nature ; 599(7886): 599-604, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34819685

RESUMEN

Amorphous materials inherit short- and medium-range order from the corresponding crystal and thus preserve some of its properties while still exhibiting novel properties1,2. Due to its important applications in technology, amorphous carbon with sp2 or mixed sp2-sp3 hybridization has been explored and prepared3,4, but synthesis of bulk amorphous carbon with sp3 concentration close to 100% remains a challenge. Such materials inherit the short-/medium-range order of diamond and should also inherit its superior properties5. Here, we successfully synthesized millimetre-sized samples-with volumes 103-104 times as large as produced in earlier studies-of transparent, nearly pure sp3 amorphous carbon by heating fullerenes at pressures close to the cage collapse boundary. The material synthesized consists of many randomly oriented clusters with diamond-like short-/medium-range order and possesses the highest hardness (101.9 ± 2.3 GPa), elastic modulus (1,182 ± 40 GPa) and thermal conductivity (26.0 ± 1.3 W m-1 K-1) observed in any known amorphous material. It also exhibits optical bandgaps tunable from 1.85 eV to 2.79 eV. These discoveries contribute to our knowledge about advanced amorphous materials and the synthesis of bulk amorphous materials by high-pressure and high-temperature techniques and may enable new applications for amorphous solids.

3.
Nat Mater ; 23(9): 1193-1199, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39080501

RESUMEN

The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective.

4.
Nature ; 569(7754): 99-103, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31043727

RESUMEN

Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3-8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9-11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6-8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15-17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.

5.
BMC Biol ; 22(1): 111, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741075

RESUMEN

BACKGROUND: Juvenile hormones (JH) play crucial role in regulating development and reproduction in insects. The most common form of JH is JH III, derived from MF through epoxidation by CYP15 enzymes. However, in the higher dipterans, such as the fruitfly, Drosophila melanogaster, a bis-epoxide form of JHB3, accounted most of the JH detected. Moreover, these higher dipterans have lost the CYP15 gene from their genomes. As a result, the identity of the P450 epoxidase in the JH biosynthesis pathway in higher dipterans remains unknown. RESULTS: In this study, we show that Cyp6g2 serves as the major JH epoxidase responsible for the biosynthesis of JHB3 and JH III in D. melanogaster. The Cyp6g2 is predominantly expressed in the corpus allatum (CA), concurring with the expression pattern of jhamt, another well-studied gene that is crucial in the last steps of JH biosynthesis. Mutation in Cyp6g2 leads to severe disruptions in larval-pupal metamorphosis and exhibits reproductive deficiencies, exceeding those seen in jhamt mutants. Notably, Cyp6g2-/-::jhamt2 double mutants all died at the pupal stage but could be rescued through the topical application of JH analogs. JH titer analyses revealed that both Cyp6g2-/- mutant and jhamt2 mutant lacking JHB3 and JH III, while overexpression of Cyp6g2 or jhamt caused a significant increase in JHB3 and JH III titer. CONCLUSIONS: These findings collectively established that Cyp6g2 as the major JH epoxidase in the higher dipterans and laid the groundwork for the further understanding of JH biosynthesis. Moreover, these findings pave the way for developing specific Cyp6g2 inhibitors as insect growth regulators or insecticides.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Drosophila melanogaster , Hormonas Juveniles , Animales , Corpora Allata/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Hormonas Juveniles/biosíntesis , Hormonas Juveniles/metabolismo , Larva/crecimiento & desarrollo , Larva/genética , Metamorfosis Biológica/genética , Oxidorreductasas , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo
6.
Curr Issues Mol Biol ; 46(7): 6769-6782, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39057046

RESUMEN

Camellia fascicularis has important ornamental, medicinal, and food value. It also has tremendous potential for exploiting bioactivities. However, the bioactivities of secondary metabolites in C. fascicularis have not been reported. The structures of compounds were determined by spectral analysis and nuclear magnetic resonance (NMR) combined with the available literature on secondary metabolites of C. fascicularis leaves. In this study, 15 compounds were identified, including 5 flavonoids (1-5), a galactosylglycerol derivative (6), a terpenoid (7), 4 lignans (8-11), and 4 phenolic acids (12-15). Compounds 6-7 and 9-12 were isolated from the genus Camellia for the first time. The remaining compounds were also isolated from C. fascicularis for the first time. Evaluation of antioxidant and antimicrobial activities revealed that compounds 5 and 8-11 exhibited stronger antioxidant activity than the positive drug ascorbic acid, while compounds 7, 13, and 15 showed similar activity to ascorbic acid. The minimum inhibitory concentration (MIC) of antibacterial activity for compounds 5, 7, 9, 11, and 13 against Pseudomonas aeruginosa was comparable to that of the positive control drug tetracycline at a concentration of 62.50 µg/mL; other secondary metabolites inhibited Escherichia coli and Staphylococcus aureus at concentrations ranging from 125-250 µg/mL.

7.
Ann Surg ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39239719

RESUMEN

OBJECTIVE: To investigate the value of intraoperative assessment of spread through air spaces (STAS) on frozen sections (FS) in peripheral small-sized lung adenocarcinoma. BACKGROUND: Surgical decision-making based on FS diagnosis of STAS may be useful to prevent local control failure after sublobar resection. METHODS: We conducted a multicenter prospective observational study of consecutive patients with cT1N0M0 invasive lung adenocarcinoma to evaluate the accuracy of FS for the intraoperative detection of STAS. The final pathology (FP) diagnosis of STAS was based on corresponding permanent paraffin sections. RESULTS: This study included 878 patients with cT1N0M0 invasive lung adenocarcinoma. A total of 833 cases (95%) were assessable for STAS on FS. 26.4% of the cases evaluated positive for STAS on FP, whereas 18.2% on FS. The accuracy, sensitivity, and specificity of FS diagnosis of STAS were 85.1%, 56.4%, and 95.4%, respectively, with moderate agreement (κ=0.575). Inter-observer agreement was substantial (κ=0.756) among the three pathologists. Subgroup analysis based on tumor size or consolidation-to-tumor ratio all showed moderate agreement for concordance. After rigorous reassessment of false-positive cases, the presence of artifacts may be the main cause of interpretation errors. Additionally, true positive cases showed more high-grade histological patterns and more advanced p-TNM stages than false negative cases. CONCLUSIONS: This is the largest prospective observational study to evaluate STAS on FS in patients with cT1N0M0 invasive lung adenocarcinoma. FS is highly specific with moderate agreement, but is not sensitive for STAS detection. While appropriately reporting STAS on FS may provide surgeons with valuable information for intraoperative decision-making, better approaches are needed.

8.
Biochem Biophys Res Commun ; 727: 150317, 2024 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959733

RESUMEN

Abnormalities in osteoclastic generation or activity disrupt bone homeostasis and are highly involved in many pathologic bone-related diseases, including rheumatoid arthritis, osteopetrosis, and osteoporosis. Control of osteoclast-mediated bone resorption is crucial for treating these bone diseases. However, the mechanisms of control of osteoclastogenesis are incompletely understood. In this study, we identified that inosine 5'-monophosphate dehydrogenase type II (Impdh2) positively regulates bone resorption. By histomorphometric analysis, Impdh2 deletion in mouse myeloid lineage cells (Impdh2LysM-/- mice) showed a high bone mass due to the reduced osteoclast number. qPCR and western blotting results demonstrated that the expression of osteoclast marker genes, including Nfatc1, Ctsk, Calcr, Acp5, Dcstamp, and Atp6v0d2, was significantly decreased in the Impdh2LysM-/- mice. Furthermore, the Impdh inhibitor MPA treatment inhibited osteoclast differentiation and induced Impdh2-cytoophidia formation. The ability of osteoclast differentiation was recovered after MPA deprivation. Interestingly, genome-wide analysis revealed that the osteoclastic mitochondrial biogenesis and functions, such as oxidative phosphorylation, were impaired in the Impdh2LysM-/- mice. Moreover, the deletion of Impdh2 alleviated ovariectomy-induced bone loss. In conclusion, our findings revealed a previously unrecognized function of Impdh2, suggesting that Impdh2-mediated mechanisms represent therapeutic targets for osteolytic diseases.


Asunto(s)
IMP Deshidrogenasa , Mitocondrias , Osteoclastos , Osteogénesis , Osteoporosis , Ovariectomía , Fosforilación Oxidativa , Animales , Femenino , Ratones , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Resorción Ósea/etiología , Diferenciación Celular , IMP Deshidrogenasa/metabolismo , IMP Deshidrogenasa/genética , IMP Deshidrogenasa/deficiencia , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Osteoporosis/metabolismo , Osteoporosis/etiología , Osteoporosis/genética , Osteoporosis/patología
9.
Histochem Cell Biol ; 162(6): 447-464, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39093409

RESUMEN

Oocyte meiotic maturation failure and chromosome abnormality is one of the main causes of infertility, abortion, and diseases. The mono-orientation of sister chromatids during the first meiosis is important for ensuring accurate chromosome segregation in oocytes. MEIKIN is a germ cell-specific protein that can regulate the mono-orientation of sister chromatids and the protection of the centromeric cohesin complex during meiosis I. Here we found that MEIKIN is a maternal protein that was highly expressed in mouse oocytes before the metaphase I (MI) stage, but became degraded by the MII stage and dramatically reduced after fertilization. Strikingly, MEIKIN underwent phosphorylation modification after germinal vesicle breakdown (GVBD), indicating its possible function in subsequent cellular event regulation. We further showed that MEIKIN phosphorylation was mediated by PLK1 at its carboxyl terminal region and its C-terminus was its key functional domain. To clarify the biological significance of meikin degradation during later stages of oocyte maturation, exogenous expression of MEIKIN was employed, which showed that suppression of MEIKIN degradation resulted in chromosome misalignment, cyclin B1 and Securin degradation failure, and MI arrest through a spindle assembly checkpoint (SAC)-independent mechanism. Exogenous expression of MEIKIN also inhibited metaphase II (MII) exit and early embryo development. These results indicate that proper MEIKIN expression level and its C-terminal phosphorylation by PLK1 are critical for regulating the metaphase-anaphase transition in meiotic oocyte. The findings of this study are important for understanding the regulation of chromosome segregation and the prevention meiotic abnormality.


Asunto(s)
Proteínas de Ciclo Celular , Ciclina B1 , Meiosis , Metafase , Oocitos , Quinasa Tipo Polo 1 , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas , Securina , Animales , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ratones , Oocitos/metabolismo , Oocitos/citología , Fosforilación , Femenino , Ciclina B1/metabolismo , Securina/metabolismo , Anafase , Ratones Endogámicos ICR , Mesotelina
10.
Hepatology ; 78(6): 1828-1842, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36804859

RESUMEN

BACKGROUND AIMS: SLC25A47 was initially identified as a mitochondrial HCC-downregulated carrier protein, but its physiological functions and transport substrates are unknown. We aimed to investigate the physiological role of SLC25A47 in hepatic metabolism. APPROACH RESULTS: In the treatment of hepatocytes with metformin, we found that metformin can transcriptionally activate the expression of Slc25a47 , which is required for AMP-activated protein kinase α (AMPKα) phosphorylation. Slc25a47 -deficient mice had increased hepatic lipid content, triglycerides, and cholesterol levels, and we found that Slc25a47 deficiency suppressed AMPKα phosphorylation and led to an increased accumulation of nuclear SREBPs, with elevated fatty acid and cholesterol biosynthetic activities. Conversely, when Slc25a47 was overexpressed in mouse liver, AMPKα was activated and resulted in the inhibition of lipogenesis. Moreover, using a diethylnitrosamine-induced mouse HCC model, we found that the deletion of Slc25a47 promoted HCC tumorigenesis and development through the activated mammalian target of rapamycin cascade. Employing homology modeling of SLC25A47 and virtual screening of the human metabolome database, we demonstrated that NAD + was an endogenous substrate for SLC25A47, and the activity of NAD + -dependent sirtuin 3 declined in Slc25a47 -deficient mice, followed by inactivation of AMPKα. CONCLUSIONS: Our findings reveal that SLC25A47, a hepatocyte-specific mitochondrial NAD + transporter, is one of the pharmacological targets of metformin and regulates lipid homeostasis through AMPKα, and may serve as a potential drug target for treating NAFLD and HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Animales , Humanos , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos , NAD/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Metformina/farmacología , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/metabolismo , Ácidos Grasos/metabolismo , Colesterol/metabolismo , Mamíferos/metabolismo
11.
Eur J Neurol ; : e16481, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39290044

RESUMEN

BACKGROUND AND PURPOSE: This study aims to examine the global, regional, and national burden of ischemic stroke from 1990 to 2021. METHOD: We used data from the Global Burden of Disease (GBD) 2021 database to comprehensively assess ischemic stroke indicators globally, regionally, and in 204 countries, including incidence, deaths, disability-adjusted life years (DALYs), estimated annual percentage change (EAPC), and Joinpoint regression analysis. RESULTS: In 2021, there were a total of 7,804,449 cases of ischemic stroke globally (95% uncertainty interval = 6,719,760-8,943,692), with an age-standardized incidence rate (ASIR) of 92.39. This represents a declining trend compared to 1990, with an EAPC of -0.67 (95% confidence interval [CI] = -0.76 to -0.58). Mortality and DALY rates also showed a downward trend (EAPC in age-standardized mortality rate: -1.83, 95% CI = -1.92 to -1.74; EAPC in age-standardized DALY rate = -1.59, 95% CI = -1.68 to -1.50). The burden of ischemic stroke was inversely correlated with gross domestic product. Regionally, from 2014 to 2021, the Caribbean experienced the fastest increase in ASIR (annual percent change = 0.15, 95% CI = 0.13 to 0.18). Among 204 countries, North Macedonia had the highest incidence, mortality, and DALY rates. In addition to metabolic risks, particulate matter pollution and low temperatures were significant environmental and occupational risk factors for ischemic stroke. Smoking and a diet high in sodium were identified as key behavioral risk factors. CONCLUSIONS: Ischemic stroke remains a serious global health challenge, and our results from this cross-sectional study suggest that the burden of disease remains high in Eastern Europe, East Asia, Central Asia, and Sub-Saharan Africa.

12.
Phys Chem Chem Phys ; 26(12): 9687-9696, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38470341

RESUMEN

Twisted bilayer graphene (tBLG) with C vacancies would greatly improve the density of states (DOS) around the Fermi level (EF) and quantum capacitance; however, the single-band tight-binding model only considering pz orbitals cannot accurately capture the low-energy physics of tBLG with C vacancies. In this work, a three-band tight-binding model containing three p orbitals of C atoms is proposed to explore the modulation mechanism of C vacancies on the DOS and quantum capacitance of tBLG. We first obtain the hopping integral parameters of the three-band tight-binding model, and then explore the electronic structures and the quantum capacitance of tBLG at a twisting angle of θ = 1.47° under different C vacancy concentrations. The impurity states contributed by C atoms with dangling bonds located around the EF and the interlayer hopping interaction could induce band splitting of the impurity states. Therefore, compared with the quantum capacitance of pristine tBLG (∼18.82 µF cm-2) at zero bias, the quantum capacitance is improved to ∼172.76 µF cm-2 at zero bias, and the working window with relatively large quantum capacitance in the low-voltage range is broadened in tBLG with C vacancies due to the enhanced DOS around the EF. Moreover, the quantum capacitance of tBLG is further increased at zero bias with an increase of the C vacancy concentration induced by more impurity states. These findings not only provide a suitable multi-band tight-binding model to describe tBLG with C vacancies but also offer theoretical insight for designing electrode candidates for low-power consumption devices with improved quantum capacitance.

13.
Environ Res ; 257: 119392, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38857857

RESUMEN

Iron (Fe) and manganese (Mn) oxides can be used to remediate Cd-polluted soils due to their excellent performance in heavy metal adsorption. However, their remediation capability is rather limited, and a higher content of available Mn and Fe in soils can reduce Cd accumulation in wheat plants due to the competitive absorption effect. In this study, goethite and cryptomelane were first respectively used to immobilize Cd in Cd-polluted weakly alkaline soils, and sodium citrate was then added to increase the content of available Mn and Fe content for further reduction of wheat Cd absorption. In the first season, the content of soil-available Cd and Cd in wheat plants significantly decreased when cryptomelane, goethite and their mixture were used as the remediation agents. Cryptomelane showed a better remediation effect, which could be attributed to its higher adsorption performance. The grain Cd content could be decreased from 0.35 mg kg-1 to 0.25 mg kg-1 when the content of cryptomelane was controlled at 0.5%. In the second season, when sodium citrate at 20 mmol kg-1 was further added to the soils with 0.5% cryptomelane treatment in the first season, the content of soil available Cd was increased by 14.8%, and the available Mn content was increased by 19.5%, leading to a lower Cd content in wheat grains (0.16 mg kg-1) probably due to the competitive absorption. This work provides a new strategy for the remediation of slightly Cd-polluted arable soils with safe and high-quality production of wheat.


Asunto(s)
Cadmio , Compuestos de Manganeso , Óxidos , Contaminantes del Suelo , Triticum , Triticum/metabolismo , Triticum/química , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/análisis , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Óxidos/química , Restauración y Remediación Ambiental/métodos , Suelo/química , Ácido Cítrico/metabolismo , Adsorción , Minerales/metabolismo , Minerales/química , Compuestos de Hierro/metabolismo , Compuestos de Hierro/química
14.
Arch Insect Biochem Physiol ; 116(4): e22138, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118528

RESUMEN

To determine the optimal temperature range for the development and reproduction of three spider mites (Eotetranychus sexmaculatus, Eotetranychus orientalis, and Oligonychus biharensis), this study investigated their developmental period, survival rate, lifespan, and reproduction under five temperatures, 21, 24, 27, 30, and 33°C, to predict and control in the field. With the gathered data, a two-sex life table was constructed for each of them. The results revealed that as the temperature increased, both O. biharensis and E. orientalis displayed a gradual reduction in their generation period. Furthermore, an inverse relationship was observed between lifespan and temperature for all three spider mite species. When examining the survival rates at varying temperatures, E. sexmaculatus exhibited the highest rate (98%) at 33°C, while E. orientalis and O. biharensis demonstrated their highest survival rates at 24°C, reaching 90% and 100% respectively. Regarding reproduction, O. biharensis displayed the highest oviposition rates at 30°C with an average of 17.45 eggs per individual. Conversely, E. sexmaculatus and E. orientalis exhibited the highest oviposition rates at 33°C, averaging at 15.22 and 21.38 eggs per individual respectively. Significantly higher intrinsic growth rates were observed for O. biharensis and E. orientalis at 33°C, with rates of 0.22 and 0.26 respectively. In contrast, E. sexmaculatus demonstrated the highest intrinsic growth rate at 27°C. The temperature of 27°C was more suitable for the growth of the E. sexmaculatus, while 33°C was the optimal temperature for the E. orientalis and O. biharensis. The current findings provide valuable guidance for the control and prevention of these three spider mites.


Asunto(s)
Tablas de Vida , Temperatura , Tetranychidae , Animales , Tetranychidae/fisiología , Tetranychidae/crecimiento & desarrollo , Femenino , Masculino , Reproducción , Longevidad , Oviposición , Hevea/crecimiento & desarrollo
15.
Int J Med Sci ; 21(2): 284-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169754

RESUMEN

Ischemic stroke ranks among the foremost clinical causes of mortality and disability, instigating neuronal degeneration, fatalities, and various sequelae. While standard treatments, such as intravenous thrombolysis and endovascular thrombectomy, prove effective, they come with limitations. Hence, there is a compelling need to develop neuroprotective agents capable of improving the functional outcomes of the nervous system. Numerous preclinical studies have demonstrated that lithium can act in multiple molecular pathways, including glycogen synthase kinase 3(GSK-3), the Wnt signaling pathway, the mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase (ERK) signaling pathway, brain-derived neurotrophic factor (BDNF), mammalian target of rapamycin (mTOR), and glutamate receptors. Through these pathways, lithium has been shown to affect inflammation, autophagy, apoptosis, ferroptosis, excitotoxicity, and other pathological processes, thereby improving central nervous system (CNS) damage caused by ischemic stroke. Despite these promising preclinical findings, the number of clinical trials exploring lithium's efficacy remains limited. Additional trials are imperative to thoroughly ascertain the effectiveness and safety of lithium in clinical settings. This review delineates the mechanisms underpinning lithium's neuroprotective capabilities in the context of ischemic stroke. It elucidates the intricate interplay between these mechanisms and sheds light on the involvement of mitochondrial dysfunction and inflammatory markers in the pathophysiology of ischemic stroke. Furthermore, the review offers directions for future research, thereby advancing the understanding of the potential therapeutic utility of lithium and establishing a theoretical foundation for its clinical application.


Asunto(s)
Accidente Cerebrovascular Isquémico , Fármacos Neuroprotectores , Humanos , Litio/farmacología , Litio/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 , Apoptosis
16.
J Chem Phys ; 160(4)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38258930

RESUMEN

Glass transition, commonly manifested upon cooling a liquid, is continuous and cooling rate dependent. For decades, the thermodynamic basis in liquid-glass transition has been at the center of debate. Here, long-time isothermal annealing was conducted via molecular dynamics simulations for metallic glasses to explore the connection of physical aging in supercooled liquid and glassy states. An anomalous two-step aging is observed in various metallic glasses, exhibiting features of supercooled liquid dynamics in the first step and glassy dynamics in the second step, respectively. Furthermore, the transition potential energy is independent of initial states, proving that it is intrinsic for a metallic glass at a given temperature. We propose that the observed dynamic transition from supercooled liquid dynamics to glassy dynamics could be glass transition manifested isothermally. On this basis, glass transition is no longer cooling rate dependent, but is shown as a clear phase boundary in the temperature-energy phase diagram. Hence, a modified out-of-equilibrium phase diagram is proposed, providing new insights into the nature of glass transition.

17.
Environ Toxicol ; 39(5): 2869-2880, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38294069

RESUMEN

BACKGROUND: Cisplatin (CDDP)-based chemotherapy has emerged as the primary treatment for muscle-invasive bladder cancer and metastatic bladder cancer. Nevertheless, a significant proportion of patients experience rapidly developed chemoresistance, leading to treatment ineffectiveness. Existing evidence suggests that chemoresistance is governed by various factors, including tumor stem cells, epithelial mesenchymal transition, and reactive oxygen species (ROS). However, limited research has been conducted on the role of PRDX2, a crucial ROS scavenger, in the modulation of chemoresistance in bladder cancer. METHODS: Cisplatin-resistant cell lines were established using the concentration gradient overlay method, and differentially expressed genes in resistant cells were screened through RNA sequencing. The expression of PRDX2 in cells and tissues was assessed using RT-qPCR, Western Blot, and immunohistochemistry. The expression of PRDX2 in bladder cancer and adjacent tissues was evaluated using a bladder cancer tissue microarray. Furthermore, the impact of PRDX2 knockdown on tumor formation and metastasis was investigated in vivo by applying subcutaneous tumor xenografts tail vein metastasis assays. RESULTS: We demonstrated that PRDX2 is significantly upregulated in bladder tumors and cisplatin-resistant bladder tumor cell lines. Overexpression of PRDX2 can promote tumor proliferation, migration, and invasion both in vitro and in vivo. We have found that knockdown of PRDX2 expression can effectively reverse cell resistance to cisplatin. Mechanistically, our findings suggest that PRDX2 is involved in regulating tumor stemness and epithelial-mesenchymal transition (EMT). Knockdown of PRDX2 affects the PI3K-AKT and mTOR signaling pathways, thereby influencing tumor stemness and EMT, ultimately impacting the chemotherapy resistance of the tumor. CONCLUSIONS: This study provides a new insight into the regulation of chemotherapy resistance in bladder cancer by PRDX2. Targeting PRDX2 can serve as a potent therapeutic target for chemotherapy resistance.


Asunto(s)
Cisplatino , Neoplasias de la Vejiga Urinaria , Humanos , Cisplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Transición Epitelial-Mesenquimal/genética , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo
18.
Mikrochim Acta ; 191(4): 201, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489138

RESUMEN

Nowadays, the frequent occurrence of food adulteration makes glucose detection particularly important in food safety and quality management. The quality and taste of honey are closely related to the glucose content. However, due to the drawbacks of expensive equipment, complex operating procedures, and time-consuming processes, the application scope of traditional glucose detection methods is limited. Hence, this study developed a photoelectric chemical (PEC) sensor, which is composed of a photoactive material of bismuth tungstate (Bi2WO6) with titanium dioxide (TiO2) and glucose oxidase (GOD), for simple and rapid detection of glucose. Notably, the composites' absorption prominently increased in the visible light region, and the photo-generated electron-hole pairs were efficiently separated by virtue of the unique nanostructure system, thus playing a crucial role in facilitating PEC activity. In the presence of dissolved oxygen, the photocurrent intensity was enhanced by H2O2 generated from glucose under electro-oxidation specifically catalyzed by GOD fixed on the modified electrode. When the working potential was 0.3 V, the changes of photocurrent response indicated that the PEC enzyme biosensor provides a low detection limit (3.8 µM), and a wide linear range (0.008-8 mM). This method has better selectivity in honey samples and broad application prospects in clinical diagnosis for future.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Peróxido de Hidrógeno , Técnicas Biosensibles/métodos , Luz , Glucosa , Glucosa Oxidasa/química
19.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39338689

RESUMEN

Non-destructive testing (NDT) techniques play a crucial role in industrial production, aerospace, healthcare, and the inspection of special equipment, serving as an indispensable part of assessing the safety condition of pressure equipment. Among these, the analysis of NDT data stands as a critical link in evaluating equipment safety. In recent years, object detection techniques have gradually been applied to the analysis of NDT data in pressure equipment inspection, yielding significant results. This paper comprehensively reviews the current applications and development trends of object detection algorithms in NDT technology for pressure-bearing equipment, focusing on algorithm selection, data augmentation, and intelligent defect recognition based on object detection algorithms. Additionally, it explores open research challenges of integrating GAN-based data augmentation and unsupervised learning to further enhance the intelligent application and performance of object detection technology in NDT for pressure-bearing equipment while discussing techniques and methods to improve the interpretability of deep learning models. Finally, by summarizing current research and offering insights for future directions, this paper aims to provide researchers and engineers with a comprehensive perspective to advance the application and development of object detection technology in NDT for pressure-bearing equipment.

20.
J Asian Nat Prod Res ; : 1-7, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093992

RESUMEN

Four isocoumarin derivatives (1-4) and five phenols (5-9) were obtained from the endophytic fungus Pezicula neosporulosa VDB39, which was isolated from the branches of Vaccinium dunalianum Wight (Ericaceae). Compound 1 is a new derivative of isocoumarin. The structures were elucidated by spectroscopic methods. Single X-ray crystallography confirmed the absolute configuration of compound 1. Additionally, the antiphytopathogenic fungi activity of isocoumarin derivatives (1-4) was evaluated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA