Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38818580

RESUMEN

Fibroblast growth factor (FGF) isoform 13, a distinct type of FGF, boasts significant potential for therapeutic intervention in cardiovascular dysfunctions. However, its impact on regulating fibrosis remains unexplored. This study aims to elucidate the role and mechanism of FGF13 on cardiac fibrosis. Here, we show that following transverse aortic constriction (TAC) surgery, interstitial fibrosis and collagen content increase in mice, along with reduced ejection fraction and fractional shortening, augmented heart mass. However, following Fgf13 deletion, interstitial fibrosis is decreased, ejection fraction and fractional shortening are increased, and heart mass is decreased, compared with those in the TAC group. Mechanistically, incubation of cardiac fibroblasts with transforming growth factor ß (TGFß) increases the expressions of types I and III collagen proteins, as well as α-smooth muscle actin (α-SMA) proteins, and enhances fibroblast proliferation and migration. In the absence of Fgf13, the expressions of these proteins are decreased, and fibroblast proliferation and migration are suppressed, compared with those in the TGFß-stimulated group. Overexpression of FGF13, but not FGF13 mutants defective in microtubule binding and stabilization, rescues the decrease in collagen and α-SMA protein and weakens the proliferation and migration function of the Fgf13 knockdown group. Furthermore, Fgf13 knockdown decreases ROCK protein expression via microtubule disruption. Collectively, cardiac Fgf13 knockdown protects the heart from fibrosis in response to haemodynamic stress by modulating microtubule stabilization and ROCK signaling pathway.

2.
Acta Pharmacol Sin ; 42(2): 218-229, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32747718

RESUMEN

Aconitine (ACO), a main active ingredient of Aconitum, is well-known for its cardiotoxicity. However, the mechanisms of toxic action of ACO remain unclear. In the current study, we investigated the cardiac effects of ACO and mesaconitine (MACO), a structurally related analog of ACO identified in Aconitum with undocumented cardiotoxicity in guinea pigs. We showed that intravenous administration of ACO or MACO (25 µg/kg) to guinea pigs caused various types of arrhythmias in electrocardiogram (ECG) recording, including ventricular premature beats (VPB), atrioventricular blockade (AVB), ventricular tachycardia (VT), and ventricular fibrillation (VF). MACO displayed more potent arrhythmogenic effect than ACO. We conducted whole-cell patch-clamp recording in isolated guinea pig ventricular myocytes, and observed that treatment with ACO (0.3, 3 µM) or MACO (0.1, 0.3 µM) depolarized the resting membrane potential (RMP) and reduced the action potential amplitude (APA) and durations (APDs) in a concentration-dependent manner. The ACO- and MACO-induced AP remodeling was largely abolished by an INa blocker tetrodotoxin (2 µM) and partly abolished by a specific Na+/K+ pump (NKP) blocker ouabain (0.1 µM). Furthermore, we observed that treatment with ACO or MACO attenuated NKP current (INa/K) and increased peak INa by accelerating the sodium channel activation with the EC50 of 8.36 ± 1.89 and 1.33 ± 0.16 µM, respectively. Incubation of ventricular myocytes with ACO or MACO concentration-dependently increased intracellular Na+ and Ca2+ concentrations. In conclusion, the current study demonstrates strong arrhythmogenic effects of ACO and MACO resulted from increasing the peak INa via accelerating sodium channel activation and inhibiting the INa/K. These results may help to improve our understanding of cardiotoxic mechanisms of ACO and MACO, and identify potential novel therapeutic targets for Aconitum poisoning.


Asunto(s)
Aconitina/análogos & derivados , Aconitina/toxicidad , Arritmias Cardíacas/inducido químicamente , Cardiotoxicidad/etiología , Aconitina/aislamiento & purificación , Aconitum/química , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/fisiopatología , Cardiotoxicidad/fisiopatología , Electrocardiografía , Cobayas , Masculino , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Técnicas de Placa-Clamp , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
3.
Pflugers Arch ; 472(10): 1457-1467, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32683500

RESUMEN

An increasing amount of evidence suggests that transmembrane member 16A (TMEM16A)-encoded Ca2+-activated Cl- channels play a crucial role in regulating tumorigenesis. Therefore, specific and potent TMEM16A inhibitors have been proposed to potentially be useful for the treatment of cancer. During drug screening, we found that benzophenanthridine alkaloids (sanguinarine, sanguinarium chloride, sanguinarine nitrate, ethoxysanguinarine, chelerythrine, and dihydrosanguinarine) potently inhibited the recombinant TMEM16A current. The IC50 and Emax values for TMEM16A inhibition of six tested benzophenanthridine alkaloids were 5.6-12.3 µM and 77-91%, respectively. These benzophenanthridine alkaloids also significantly inhibited the endogenous TMEM16A currents and proliferation, migration, and induced apoptosis in LA795 lung adenocarcinoma cells. These data demonstrate that benzophenanthridine alkaloids are novel TMEM16A inhibitors and are potentially useful in specific cancer therapies. These findings also provide new insight for the development of TMEM16A inhibitors.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Anoctamina-1/metabolismo , Antineoplásicos/farmacología , Benzofenantridinas/farmacología , Neoplasias Pulmonares/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células CHO , Calcio/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cricetinae , Cricetulus , Ratones
4.
J Mol Cell Cardiol ; 104: 63-74, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28119060

RESUMEN

The intracellular fibroblast growth factors (iFGF/FHFs) bind directly to cardiac voltage gated Na+ channels, and modulate their function. Mutations that affect iFGF/FHF-Na+ channel interaction are associated with arrhythmia syndromes. Although suspected to modulate other ionic currents, such as Ca2+ channels based on acute knockdown experiments in isolated cardiomyocytes, the in vivo consequences of iFGF/FHF gene ablation on cardiac electrical activity are still unknown. We generated inducible, cardiomyocyte-restricted Fgf13 knockout mice to determine the resultant effects of Fgf13 gene ablation. Patch clamp recordings from ventricular myocytes isolated from Fgf13 knockout mice showed a ~25% reduction in peak Na+ channel current density and a hyperpolarizing shift in steady-state inactivation. Electrocardiograms on Fgf13 knockout mice showed a prolonged QRS duration. The Na+ channel blocker flecainide further prolonged QRS duration and triggered ventricular tachyarrhythmias only in Fgf13 knockout mice, suggesting that arrhythmia vulnerability resulted, at least in part, from a loss of functioning Na+ channels. Consistent with these effects on Na+ channels, action potentials in Fgf13 knockout mice, compared to Cre control mice, exhibited slower upstrokes and reduced amplitude, but unexpectedly had longer durations. We investigated candidate sources of the prolonged action potential durations in myocytes from Fgf13 knockout mice and found a reduction of the transient outward K+ current (Ito). Fgf13 knockout did not alter whole-cell protein levels of Kv4.2 and Kv4.3, the Ito pore-forming subunits, but did decrease Kv4.2 and Kv4.3 at the sarcolemma. No changes were seen in the sustained outward K+ current or voltage-gated Ca2+ current, other candidate contributors to the increased action potential duration. These results implicate that FGF13 is a critical cardiac Na+ channel modulator and Fgf13 knockout mice have increased arrhythmia susceptibility in the setting of Na+ channel blockade. The unanticipated effect on Ito revealed new FGF13 properties and the unexpected lack of an effect on voltage-gated Ca2+ channels highlight potential compensatory changes in vivo not readily revealed with acute Fgf13 knockdown in cultured cardiomyocytes.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Factores de Crecimiento de Fibroblastos/deficiencia , Predisposición Genética a la Enfermedad , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Electrocardiografía , Femenino , Técnicas de Inactivación de Genes , Marcación de Gen , Sitios Genéticos , Masculino , Ratones , Ratones Noqueados , Canales de Sodio/metabolismo , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
5.
Heliyon ; 10(18): e37767, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39318794

RESUMEN

Endoplasmic reticulum (ER) stress is implicated in cardiac arrhythmia whereas the associated mechanisms remain inadequately understood. Kv1.5 channels are essential for atrial repolarization. Whether ER stress affects Kv1.5 channels is unknown. This study aimed to elucidate the response of Kv1.5 channels to ER stress by clarifying the unfolded protein response (UPR) branch responsible for the channel modulation. In addition, the effect of tetramethylpyrazine (TMP) on Kv1.5 channels was studied. Patch clamp and western-blot results revealed that exposure of HL-1 atrial myocytes to ER stress inducer tunicamycin upregulates Kv1.5 expression, increases Kv1.5 channel current (I Kur ) (14.91 ± 1.11 vs. 6.11 ± 1.31 pA/pF, P < 0.001), and shortened action potential duration (APD) (APD90: 82.79 ± 5.25 vs.121.11 ± 6.72 ms, P < 0.01), which could be reverted by ER stress inhibitors. Blockade of the PERK branch while not IRE1 and ATF6 branches of UPR downregulated Kv1.5 expression, accompanied by a decreased I Kur (9.03 ± 0.99 pA/pF) and a prolonged APD90 (113.69 ± 4.41 ms) (P < 0.01). PERK-mediated increases of Kv1.5 expression and I Kur were also observed in HL-1 cells incubated with thapsigargin. TMP suppressed the enhancement of I Kur (10.52 ± 0.97 vs. 17.52 ± 2.25 pA/pF, P < 0.05), prevented the shortening of APD (APD90: 110.16 ± 5.36 vs. 84.84 ± 4.58 ms, P < 0.05), and inhibited the upregulation of Kv1.5 triggered by ER stress. Our study suggests that ER stress induces upregulation and activation of Kv1.5 channels in atrial myocytes through the PERK branch of UPR. TMP prevents Kv1.5 upregulation/activation and the resultant APD shortening by inhibiting ER stress. These results may shed light on the mechanisms of atrial arrhythmogenesis and the antiarrhythmic effect of the traditional Chinese herb TMP.

6.
Biochem Pharmacol ; 225: 116329, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38821375

RESUMEN

Calcium signaling abnormality in cardiomyocytes, as a key mechanism, is closely associated with developing heart failure. Fibroblast growth factor 13 (FGF13) demonstrates important regulatory roles in the heart, but its association with cardiac calcium signaling in heart failure remains unknown. This study aimed to investigate the role and mechanism of FGF13 on calcium mishandling in heart failure. Mice underwent transaortic constriction to establish a heart failure model, which showed decreased ejection fraction, fractional shortening, and contractility. FGF13 deficiency alleviated cardiac dysfunction. Heart failure reduces calcium transients in cardiomyocytes, which were alleviated by FGF13 deficiency. Meanwhile, FGF13 deficiency restored decreased Cav1.2 and Serca2α expression and activity in heart failure. Furthermore, FGF13 interacted with microtubules in the heart, and FGF13 deficiency inhibited the increase of microtubule stability during heart failure. Finally, in isoproterenol-stimulated FGF13 knockdown neonatal rat ventricular myocytes (NRVMs), wildtype FGF13 overexpression, but not FGF13 mutant, which lost the binding site of microtubules, promoted calcium transient abnormality aggravation and Cav1.2 downregulation compared with FGF13 knockdown group. Generally, FGF13 deficiency improves abnormal calcium signaling by inhibiting the increased microtubule stability in heart failure, indicating the important role of FGF13 in cardiac calcium homeostasis and providing new avenues for heart failure prevention and treatment.


Asunto(s)
Señalización del Calcio , Factores de Crecimiento de Fibroblastos , Insuficiencia Cardíaca , Microtúbulos , Miocitos Cardíacos , Animales , Masculino , Ratones , Ratas , Células Cultivadas , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas Sprague-Dawley
7.
Int J Biol Macromol ; 242(Pt 4): 125151, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37270127

RESUMEN

Protein post-translational modifications (PTMs) are important regulators of protein functions and produce proteome complexity. SIRT1 has NAD+-dependent deacylation of acyl-lysine residues. The present study aimed to explore the correlation between lysine crotonylation (Kcr) on cardiac function and rhythm in Sirt1 cardiac-specific knockout (ScKO) mice and related mechanism. Quantitative proteomics and bioinformatics analysis of Kcr were performed in the heart tissue of ScKO mice established with a tamoxifen-inducible Cre-loxP system. The expression and enzyme activity of crotonylated protein were assessed by western blot, co-immunoprecipitation, and cell biology experiment. Echocardiography and electrophysiology were performed to investigate the influence of decrotonylation on cardiac function and rhythm in ScKO mice. The Kcr of SERCA2a was significantly increased on Lys120 (1.973 folds). The activity of SERCA2a decreased due to lower binding energy of crotonylated SERCA2a and ATP. Changes in expression of PPAR-related proteins suggest abnormal energy metabolism in the heart. ScKO mice had cardiac hypertrophy, impaired cardiac function, and abnormal ultrastructure and electrophysiological activities. We conclude that knockout of SIRT1 alters the ultrastructure of cardiac myocytes, induces cardiac hypertrophy and dysfunction, causes arrhythmia, and changes energy metabolism by regulating Kcr of SERCA2a. These findings provide new insight into the role of PTMs in heart diseases.


Asunto(s)
Cardiopatías , Lisina , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Ratones , Arritmias Cardíacas , Cardiomegalia/genética , Lisina/química , Ratones Noqueados , Procesamiento Proteico-Postraduccional , Sirtuina 1/genética , Sirtuina 1/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(4): 166643, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669577

RESUMEN

OBJECTIVES: Studies in certain cardiac hypertrophy models suggested the individual role of soluble epoxide hydrolase (sEH) and canonical transient receptor potential 3 (TRPC3) channels, however, whether they jointly mediate hypertrophic process remains unexplored. Hyperhomocysteinemia promotes cardiac hypertrophy while the involvement of sEH and TRPC3 channels remains unknown. This study aimed to explore the role of, and interrelation between sEH and TRPC3 channels in homocysteine-induced cardiac hypertrophy. METHODS: Rats were fed methionine-enriched diet to induce hyperhomocysteinemia. H9c2 cells and neonatal rat cardiomyocytes were incubated with homocysteine. Cardiac hypertrophy was evaluated by echocardiography, histological examination, immunofluorescence imaging, and expressions of hypertrophic markers. Epoxyeicosatrienoic acids (EETs) were determined by ELISA. TRPC3 current was recorded by patch-clamp. Gene promotor activity was measured using dual-luciferase reporter assay. RESULTS: Inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) reduced ventricular mass, lowered the expression of hypertrophic markers, decreased interstitial collagen deposition, and improved cardiac function in hyperhomocysteinemic rats, associated with restoration of EETs levels in myocardium. TPPU or knockdown of sEH suppressed TRPC3 transcription and translation as well as TRPC3 current that were enhanced by homocysteine. Exogenous 11,12-EET inhibited homocysteine-induced TRPC3 expression and cellular hypertrophy. Silencing C/EBPß attenuated, while overexpressing C/EBPß promoted homocysteine-induced hypertrophy and expressions of sEH and TRPC3, resulting respectively from inhibition or activation of sEH and TRPC3 gene promoters. CONCLUSIONS: sEH and TRPC3 channels jointly contribute to homocysteine-induced cardiac hypertrophy. Homocysteine transcriptionally activates sEH and TRPC3 genes through a common regulatory element C/EBPß. sEH activation leads to an upregulation of TRPC3 channels via a 11,12-EET-dependent manner.


Asunto(s)
Cardiomegalia , Epóxido Hidrolasas , Hiperhomocisteinemia , Animales , Ratas , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Eicosanoides , Epóxido Hidrolasas/genética , Epóxido Hidrolasas/metabolismo , Hiperhomocisteinemia/inducido químicamente , Hiperhomocisteinemia/complicaciones , Miocardio/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
9.
Eur J Pharmacol ; 908: 174340, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34265294

RESUMEN

The transmembrane member 16A (TMEM16A)-encoded Ca2+-activated Cl- channel (CaCC) is expressed in interstitial cells of Cajal (ICCs) and involved in the generation of the slow-wave currents of gastrointestinal (GI) smooth muscles. TMEM16A modulators have been shown to positively or negatively regulate the contraction of gastrointestinal smooth muscle. Therefore, targeting the pharmacological modulation of TMEM16A may represent a novel treatment approach for gastrointestinal dysfunctions such as constipation and diarrhoea. In this study, evodiamine and rutecarpine were extracted from the traditional Chinese medicine Evodia rutaecarpa and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on intestinal peristalsis were examined. Whole-cell patch clamp results show that evodiamine and rutecarpine inhibited TMEM16A Cl- currents in CHO cells. The half-maximal inhibition values (IC50) of evodiamine and rutecarpine on TMEM16A Cl- currents were 11.8 ± 1.3 µΜ and 9.2 ± 0.4 µM, and the maximal effect values (Emax) were 95.8 ± 5.1% and 99.1 ± 1.6%, respectively. The Lys384, Thr385, and Met524 in TMEM16A are critical for evodiamine and rutecarpine's inhibitory effects. Further functional studies show that both evodiamine and rutecarpine can significantly suppress the peristalsis in isolated guinea-pig ileum. These findings demonstrate that evodiamine and rutecarpine are new TMEM16A inhibitors and support the regulation effect of TMEM16A modulators on gastrointestinal motility.


Asunto(s)
Alcaloides Indólicos , Quinazolinas , Animales , Cricetulus , Cobayas , Células Intersticiales de Cajal/efectos de los fármacos , Peristaltismo
10.
Vascul Pharmacol ; 113: 27-37, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30389615

RESUMEN

OBJECTIVES: We recently reported the involvement of ER stress-mediated BKCa channel inhibition in homocysteine-induced coronary dilator dysfunction. In another study, we demonstrated that tetramethylpyrazine (TMP), an active ingredient of the Chinese herb Chuanxiong, possesses potent anti-ER stress capacity. The present study investigated whether TMP protects BKCa channels from homocysteine-induced inhibition and whether suppression of ER stress is a mechanism contributing to the protection. Furthermore, we explored the signaling transduction involved in TMP-conferred protection on BKCa channels. METHODS: BKCa channel-mediated relaxation was studied in porcine small coronary arteries. Expressions of BKCa channel subunits, ER stress molecules, and E3 ubiquitin ligases, as well as BKCa ubiquitination were determined in porcine coronary arterial smooth muscle cells (PCASMCs). Whole-cell BKCa currents were recorded. RESULTS: Exposure of PCASMCs to homocysteine or the chemical ER stressor tunicamycin increased the expression of ER stress molecules, which was significantly inhibited by TMP. Suppression of ER stress by TMP preserved the BKCa ß1 protein level and restored the BKCa current in PCASMCs, concomitant with an improved BKCa-mediated dilatation in coronary arteries. TMP attenuated homocysteine-induced BKCa ß1 protein ubiquitination, in which inhibition of ER stress-mediated FoxO3a activation and FoxO3a-dependent atrogin-1 and Murf-1 was involved. CONCLUSIONS: Reversal of BKCa channel inhibition via suppressing ER stress-mediated loss of ß1 subunits contributes to the protective effect of TMP against homocysteine on coronary dilator function. Inhibition of FoxO3a-dependent ubiquitin ligases is involved in TMP-conferred normalization of BKCa ß1 protein level. These results provide new mechanistic insights into the cardiovascular benefits of TMP.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Homocisteína/toxicidad , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Pirazinas/farmacología , Vasodilatación/efectos de los fármacos , Animales , Células Cultivadas , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Citoprotección , Proteína Forkhead Box O3/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/efectos de los fármacos , Sus scrofa , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación
11.
PLoS One ; 12(1): e0168435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28056022

RESUMEN

Aconitine (ACO) is well-known for causing lethal ventricular tachyarrhythmias. While cardiac Na+ channel opening during repolarization has long been documented in animal cardiac myocytes, the cellular effects and mechanism of ACO in human remain unexplored. This study aimed to assess the proarrhythmic effects of ACO in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). ACO concentration-dependently (0.3 ~ 3.0 µM) shortened the action potentials (AP) durations (APD) in ventricular-like hiPSC-CMs by > 40% and induced delayed after-depolarization. Laser-scanning confocal calcium imaging analysis showed that ACO decreased the duration and amplitude of [Ca2+]i transients and increased in the beating frequencies by over 60%. Moreover, ACO was found to markedly reduce the L-type calcium channel (LTCC) currents (ICa,L) in hiPSC-CMs associated with a positive-shift of activation and a negative shift of inactivation. ACO failed to alter the peak and late Na+ currents (INa) in hiPSC-CMs while it drastically increased the late INa in Guinea-pig ventricular myocytes associated with enhanced activation/delayed inactivation of INa at -55 mV~ -85 mV. Further, the effects of ACO on ICa,L, INa and the rapid delayed rectifier potassium current (Ikr) were validated in heterologous expression systems by automated voltage-clamping assays and a moderate suppression of Ikr was observed in addition to concentration-dependent ICa,L inhibition. Lastly, increased beating frequency, decreased Ca2+ wave and shortened field potential duration were recorded from hiPSC-CMs by microelectrode arrays assay. In summary, our data demonstrated that LTCC inhibition could play a main role in the proarrhythmic action of ACO in human cardiomyocytes.


Asunto(s)
Aconitina/toxicidad , Canales de Calcio Tipo L/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Células Cultivadas , Cobayas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Microscopía Confocal , Técnicas de Placa-Clamp
12.
Oncotarget ; 8(31): 51462-51477, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881660

RESUMEN

The molecular mechanism of endoplasmic reticulum (ER) stress in vascular pathophysiology remains inadequately understood. We studied the role of ER stress in homocysteine-induced impairment of coronary dilator function, with uncovering the molecular basis of the effect of ER stress on smooth muscle large-conductance Ca2+-activated K+ (BKCa) channels. The vasodilatory function of BKCa channels was studied in a myograph using endothelium-denuded porcine small coronary arteries. Primary cultured porcine coronary artery smooth muscle cells were used for mRNA and protein measurements and current recording of BKCa channels. Homocysteine inhibited vasorelaxant response to the BKCachannel opener NS1619, lowered BKCa ß1 subunit protein level and suppressed BKCa current. Inhibition of ER stress restored BKCa ß1 protein level and NS1619-evoked vasorelaxation. Selective blockade of the PKR-like ER kinase (PERK) yielded similarly efficient restoration of BKCa ß1, preserving BKCa current and BKCa-mediated vasorelaxation. The restoration of BKCa ß1 by PERK inhibition was associated with reduced atrogin-1 expression and decreased nuclear localization of forkhead box O transcription factor 3a (FoxO3a). Silencing of atrogin-1 prevented homocysteine-induced BKCa ß1 loss and silencing of FoxO3a prevented atrogin-1 upregulation induced by homocysteine, accompanied by preservation of BKCa ß1 protein level and BKCa current. ER stress mediates homocysteine-induced BKCa channel inhibition in coronary arteries. Activation of FoxO3a by PERK branch underlies the ER stress-mediated BKCa inhibition through a mechanism involving ubiquitin ligase-enhanced degradation of the channel ß1 subunit.

13.
Sci Rep ; 7(1): 5895, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724979

RESUMEN

Despite increasing knowledge of the significance of calcium-activated potassium (KCa) and canonical transient receptor potential (TRPC) channels in endothelial physiology, no studies so far have investigated the link between these two distinct types of channels in the control of vascular tone in pathological conditions. We previously demonstrated that hypoxia-reoxygenation (H-R) inhibits endothelial KCa and TRPC3 channels in porcine coronary arteries (PCAs). The present study further investigated whether modulation of TRPC3 is involved in H-R-induced KCa channel inhibition and associated vasodilatory dysfunction using approaches of wire myography, whole-cell voltage-clamp, and coimmunoprecipitation. Pharmacological inhibition or siRNA silencing of TRPC3 significantly suppressed bradykinin-induced intermediate- and small-conductance KCa (IKCa and SKCa) currents in endothelial cells of PCAs (PCAECs). TRPC3 protein exists in physical association with neither IKCa nor SKCa. In H-R-exposed PCAECs, the response of IKCa and SKCa to bradykinin-stimulation and to TRPC3-inhibition was markedly weakened. Activation of TRPC3 channels restored H-R-suppressed KCa currents in association with an improved endothelium-derived hyperpolarizing factor (EDHF)-type vasorelaxation. We conclude that inhibition of TRPC3 channels contributes to H-R-induced suppression of KCa channel activity, which serves as a mechanism underlying coronary endothelial dysfunction in ischemia-reperfusion (I-R) injury and renders TRPC3 a potential target for endothelial protection in I-R conditions.


Asunto(s)
Vasos Coronarios/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Hipoxia/fisiopatología , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/fisiopatología , Canales Catiónicos TRPC/metabolismo , Animales , Factores Biológicos/metabolismo , Vasos Coronarios/metabolismo , Técnicas de Silenciamiento del Gen , Hipoxia/metabolismo , Unión Proteica , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Porcinos , Vasodilatación
14.
Channels (Austin) ; 10(5): 410-420, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27246624

RESUMEN

FGF13 (FHF2), the major fibroblast growth factor homologous factor (FHF) in rodent heart, directly binds to the C-terminus of the main cardiac sodium channel, NaV1.5. Knockdown of FGF13 in cardiomyocytes induces slowed ventricular conduction by altering NaV1.5 function. FGF13 has five splice variants, each of which possess the same core region and C terminus but differing in their respective N termini. Whether and how these alternatively spliced N termini impart isoform-specific regulation of NaV1.5, however, has not been reported. Here, we exploited a heterologous expression to explore the specific modulatory effects of FGF13 splice variants FGF13S, FGF13U and FGF13YV on NaV1.5 function. We found these three splice variants differentially modulated NaV1.5 current density. Although steady-state activation was unaltered by any of the FGF13 isoforms (compared to control cells expressing Nav1.5 but not expressing FGF13), open-state fast inactivation and closed-state fast inactivation were markedly slowed, steady-state availability was significantly shifted toward the depolarizing direction, and the window current was increased by each of FGF13 isoforms. Most strikingly, FGF13S hastened the rate of NaV1.5 entry into the slow inactivation state and induced a dramatic slowing of recovery from inactivation, which caused a large decrease in current after either low or high frequency stimulation. Overall, these data showed the diversity of the roles of the FGF13 N-termini in NaV1.5 channel modulation and suggested the importance of isoform-specific regulation.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Activación del Canal Iónico/fisiología , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Línea Celular , Humanos , Isoformas de Proteínas/fisiología
15.
Atherosclerosis ; 242(1): 191-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26204495

RESUMEN

OBJECTIVE: It remains incompletely understood how homocysteine impairs endothelial function. Whether mechanisms such as calcium-activated potassium (KCa) channels are involved is uncertain and the significance of endoplasmic reticulum (ER) stress in KCa channel-dependent endothelial function in hyperhomocysteinemia remains unexplored. We investigated the effect of homocysteine on endothelial KCa channels in coronary vasculature with further exploration of the role of ER stress. METHODS: Vasorelaxation mediated by intermediate- and small-conductance KCa (IKCa and SKCa) channels was studied in porcine coronary arteries in a myograph. IKCa and SKCa channel currents were recorded by whole-cell patch-clamp in coronary endothelial cells. Protein levels of endothelial IKCa and SKCa channels were determined for both whole-cell and surface expressions. RESULTS: Homocysteine impaired bradykinin-induced IKCa and SKCa-dependent EDHF-type relaxation and attenuated the vasorelaxant response to the channel activator. IKCa and SKCa currents were suppressed by homocysteine. Inhibition of ER stress during homocysteine exposure enhanced IKCa and SKCa currents, associated with improved EDHF-type response and channel activator-induced relaxation. Homocysteine did not alter whole-cell protein levels of IKCa and SKCa whereas lowered surface expressions of these channels, which were restored by ER stress inhibition. CONCLUSIONS: Homocysteine induces endothelial dysfunction through a mechanism involving ER stress-mediated suppression of IKCa and SKCa channels. Inhibition of cell surface expression of these channels by ER stress is, at least partially, responsible for the suppressive effect of homocysteine on the channel function. This study provides new mechanistic insights into homocysteine-induced endothelial dysfunction and advances our knowledge of the significance of ER stress in vascular disorders.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Homocisteína/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Técnicas In Vitro , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Potenciales de la Membrana , Transducción de Señal/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Porcinos , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA