Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 45(8): 1701-1714, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38609562

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) plays an important role in the occurrence and progression of tumors, leading to resistance and poor prognosis. Activation of STAT3 signaling is frequently detected in hepatocellular carcinoma (HCC), but potent and less toxic STAT3 inhibitors have not been discovered. Here, based on antisense technology, we designed a series of stabilized modified antisense oligonucleotides targeting STAT3 mRNA (STAT3 ASOs). Treatment with STAT3 ASOs decreased the STAT3 mRNA and protein levels in HCC cells. STAT3 ASOs significantly inhibited the proliferation, survival, migration, and invasion of cancer cells by specifically perturbing STAT3 signaling. Treatment with STAT3 ASOs decreased the tumor burden in an HCC xenograft model. Moreover, aberrant STAT3 signaling activation is one of multiple signaling pathways involved in sorafenib resistance in HCC. STAT3 ASOs effectively sensitized resistant HCC cell lines to sorafenib in vitro and improved the inhibitory potency of sorafenib in a resistant HCC xenograft model. The developed STAT3 ASOs enrich the tools capable of targeting STAT3 and modulating STAT3 activity, serve as a promising strategy for treating HCC and other STAT3-addicted tumors, and alleviate the acquired resistance to sorafenib in HCC patients. A series of novel STAT3 antisense oligonucleotide were designed and showed potent anti-cancer efficacy in hepatocellular carcinoma in vitro and in vivo by targeting STAT3 signaling. Moreover, the selected STAT3 ASOs enhance sorafenib sensitivity in resistant cell model and xenograft model.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Proliferación Celular , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Sorafenib , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones Desnudos , Oligonucleótidos Antisentido/farmacología , Oligonucleótidos Antisentido/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Oligonucleótidos/farmacología
2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201624

RESUMEN

A growing body of evidence indicates that the G protein-coupled bile acid receptor, TGR5, plays a critical role in multiple physiological processes ranging from metabolic disorders to cancers. However, the biological functions of TGR5 in cervical cancer (CC) have not been elucidated. Here, using TGR5 knockout mice, we found that a deficiency of TGR5 leads to greater sensitivity to the progression of cervical inflammation. Activation of TGR5 by its specific ligands significantly attenuated the malignant behavior of CC cells. In addition, we found that TGR5 can negatively modulate the expression of lncRNA HCP5 by blocking its transcription activation when mediated by p65. HCP5 was highly expressed in CC tissues, which was positively correlated with the poor prognosis of CC patients. HCP5 knockdown notably restrained CC cell proliferation, colony formation, and migration in vitro, and inhibited tumor growth in vivo. Furthermore, HCP5 can function as the molecular sponge for miR-139-5p to upregulate DNA damage-induced transcript 4 (DDIT4) in CC cells. Murine xenograft studies demonstrated that TGR5 suppressed the tumor formation of CC cells and downregulated HCP5 and DDIT4 while increasing miR-139-5p in the xenografts. Taken together, these findings, for the first time, indicate that TGR5 inhibits CC progression by regulating the HCP5/miR-139-5p/DDIT4 axis, suggesting that it may represent a novel and potent target for CC treatment.


Asunto(s)
Proliferación Celular , Regulación Neoplásica de la Expresión Génica , MicroARNs , ARN Largo no Codificante , Receptores Acoplados a Proteínas G , Neoplasias del Cuello Uterino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Ratones , Proliferación Celular/genética , Progresión de la Enfermedad , Ratones Noqueados , Línea Celular Tumoral , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Movimiento Celular/genética
3.
Am J Pathol ; 192(3): 503-517, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34896072

RESUMEN

The overactivation of canonical Wnt/ß-catenin pathway is one of the main cascades for the initiation, progression, and recurrence of most human malignancies. As an indispensable coreceptor for the signaling transduction of the canonical Wnt/ß-catenin pathway, LRP5 is up-regulated and exerts a carcinogenic role in most types of cancer. However, its expression level and role in gastric cancer (GC) has not been clearly elucidated. The current work showed that LRP5 was overexpressed in GC tissues and the expression of LRP5 was positively associated with the advanced clinical stages and poor prognosis. Ectopic expression of LRP5 enhanced the proliferation, invasiveness, and drug resistance of GC cells in vitro, and accelerated the tumor growth in nude mice, through activating the canonical Wnt/ß-catenin signaling pathway and up-regulating aerobic glycolysis, thus increasing the energy supply for GC cells. Additionally, the expression of LRP5 and glycolysis-related genes showed an obviously positive correlation in GC tissues. By contrast, the exact opposite results were observed when the endogenous LRP5 was silenced in GC cells. Collectively, these results not only reveal the carcinogenic role of LRP5 during GC development through activating the canonical Wnt/ß-catenin and glycolysis pathways, but also provide a valuable candidate for the diagnosis and treatment of human GC.


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Neoplasias Gástricas , Vía de Señalización Wnt , Animales , Carcinogénesis , Línea Celular Tumoral , Proliferación Celular/genética , Glucólisis , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Ratones , Ratones Desnudos , Neoplasias Gástricas/patología , beta Catenina/metabolismo
4.
Microbiol Immunol ; 67(3): 129-141, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36540014

RESUMEN

Osteoarthritis (OA) is a degenerative disease that occurs mostly in the elderly, and its specific pathogenesis is still unknown, but recent studies have found that circular RNA generally display aberrant expression in OA. Our study explored the expression characteristics and mechanism of action of circ-NT5C2 in OA. Circ-NT5C2, microRNA-142-5p (miR-142-5p), and nicotinamide phosphoribosyltransferase (NAMPT) mRNA levels were measured using RT-qPCR. Western blot was employed to assess the protein level of NAMPT and extracellular matrix (ECM) production-related markers. The viability, proliferation, apoptosis and inflammation were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Relationship between miR-142-5p and circ-NT5C2 or NAMPT was demonstrated by dual-luciferase reporter system and RNA immunoprecipitation assay. We reported that circ-NT5C2 and NAMPT were greatly upregulated, and miR-142-5p level was constrained in OA tissues and in a cell model. Circ-NT5C2 silencing alleviated IL-1ß-induced inhibitory effects on chondrocyte proliferation and ECM generation, meanwhile the promotional role of IL-1ß on chondrocyte apoptosis and inflammation was also weakened. The targeting relationship of miR-142-5p with either circ-NT5C2 or NAMPT was confirmed. Knockdown of miR-142-5p reversed the suppressive effects of circ-NT5C2 silencing on the OA progression in vitro, and NAMPT overexpression also attenuated the effects of miR-142-5p upregulation in an OA cell model. Collectively, circ-NT5C2 accelerated the OA process by targeting the miR-142-5p/NAMPT axis. This study provides valuable information to find a better treatment for OA.


Asunto(s)
5'-Nucleotidasa , Interleucina-1beta , MicroARNs , Nicotinamida Fosforribosiltransferasa , Osteoartritis , Anciano , Humanos , 5'-Nucleotidasa/genética , Apoptosis/genética , Inflamación/genética , Interleucina-1beta/genética , MicroARNs/genética , Nicotinamida Fosforribosiltransferasa/genética , Osteoartritis/genética
5.
J Cell Mol Med ; 26(4): 1095-1112, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34997691

RESUMEN

The overactivation of canonical Wnt/ß-catenin pathway and the maintenance of cancer stem cells (CSCs) are essential for the onset and malignant progression of most human cancers. However, their regulatory mechanism in colorectal cancer (CRC) has not yet been well demonstrated. Low-density lipoprotein receptor-related protein 5 (LRP5) has been identified as an indispensable co-receptor with frizzled family members for the canonical Wnt/ß-catenin signal transduction. Herein, we show that activation of LRP5 gene promotes CSCs-like phenotypes, including tumorigenicity and drug resistance in CRC cells, through activating the canonical Wnt/ß-catenin and IL-6/STAT3 signalling pathways. Clinically, the expression of LRP5 is upregulated in human CRC tissues and closely associated with clinical stages of patients with CRC. Further analysis showed silencing of endogenous LRP5 gene is sufficient to suppress the CSCs-like phenotypes of CRC through inhibiting these two pathways. In conclusion, our findings not only reveal a regulatory cross-talk between canonical Wnt/ß-catenin signalling pathway, IL-6/STAT3 signalling pathway and CD133-related stemness that promote the malignant behaviour of CRC, but also provide a valuable target for the diagnosis and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Humanos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
6.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36613528

RESUMEN

Breast cancer is a major health threat and the second leading cause of cancer-related deaths in women worldwide. The detailed mechanisms involved in the initiation and progression of breast cancer remain unclear. In recent years, amounting evidence indicated that long non-coding RNAs (lncRNAs) played crucial roles in regulating various biological processes and malignancy tumors, including breast cancer. In this review, we briefly introduce the functions and underlying mechanisms by which lncRNAs are involved in breast cancer. We summarize the roles of the lncRNAs in regulating malignant behaviors of breast cancer, such as cell proliferation, migration and invasion, epithelial-mesenchymal transition (EMT), apoptosis, and drug resistance. Additionally, we also briefly summarize the roles of circular RNAs (circRNAs) in breast cancer carcinogenesis.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Humanos , Femenino , ARN Largo no Codificante/genética , Neoplasias de la Mama/genética , Carcinogénesis , ARN Circular/genética , Transición Epitelial-Mesenquimal/genética
7.
Mol Med ; 27(1): 144, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740314

RESUMEN

BACKGROUND: The gut microbiome is the totality of microorganisms, bacteria, viruses, protozoa, and fungi within the gastrointestinal tract. The gut microbiome plays key roles in various physiological and pathological processes through regulating varieties of metabolic factors such as short-chain fatty acids, bile acids and amino acids. Nuclear receptors, as metabolic mediators, act as a series of intermediates between the microbiome and the host and help the microbiome regulate diverse processes in the host. Recently, nuclear receptors such as farnesoid X receptor, peroxisome proliferator-activated receptors, aryl hydrocarbon receptor and vitamin D receptor have been identified as key regulators of the microbiome-host crosstalk. These nuclear receptors regulate metabolic processes, immune activity, autophagy, non-alcoholic and alcoholic fatty liver disease, inflammatory bowel disease, cancer, obesity, and type-2 diabetes. CONCLUSION: In this review, we have summarized the functions of the nuclear receptors in the gut microbiome-host axis in different physiological and pathological conditions, indicating that the nuclear receptors may be the good targets for treatment of different diseases through the crosstalk with the gut microbiome.


Asunto(s)
Microbioma Gastrointestinal , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Humanos
8.
Nat Mater ; 19(7): 712-718, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32203458

RESUMEN

Superelasticity associated with the martensitic transformation has found a broad range of engineering applications1,2. However, the intrinsic hysteresis3 and temperature sensitivity4 of the first-order phase transformation significantly hinder the usage of smart metallic components in many critical areas. Here, we report a large superelasticity up to 15.2% strain in [001]-oriented NiCoFeGa single crystals, exhibiting non-hysteretic mechanical responses, a small temperature dependence and high-energy-storage capability and cyclic stability over a wide temperature and composition range. In situ synchrotron X-ray diffraction measurements show that the superelasticity is correlated with a stress-induced continuous variation of lattice parameter accompanied by structural fluctuation. Neutron diffraction and electron microscopy observations reveal an unprecedented microstructure consisting of atomic-level entanglement of ordered and disordered crystal structures, which can be manipulated to tune the superelasticity. The discovery of the large elasticity related to the entangled structure paves the way for exploiting elastic strain engineering and development of related functional materials.

9.
Am J Pathol ; 190(2): 469-483, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31783009

RESUMEN

Liver cancer is the third leading cause of cancer-related death worldwide. Herein, we show that miR-149* serves as a novel tumor suppressor for liver tumorigenesis. Mice with genetic deletion of miR-149* (miR-149*-/- mice), which caused loss of both miR-149 and miR-149*, were considerably more susceptible to acute liver injury and hepatic carcinogenesis induced by diethylnitrosamine than wild-type mice, accompanied by increased compensatory proliferation and up-regulated gene expression of certain inflammatory cytokines. miR-149* mimics dramatically impaired liver cancer cell proliferation and migration in vitro and blocked liver cancer progression in a xenograft model. Furthermore, miR-149* strongly suppressed NF-κB signaling and repressed tumor necrosis factor receptor type 1-associated death domain protein expression in the NF-κB signaling pathway. These results reveal that miR-149*, as a novel liver tumor suppressor, may serve as a potential therapeutic target for liver cancer treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas Experimentales/patología , MicroARNs/fisiología , FN-kappa B/metabolismo , Proteína de Dominio de Muerte Asociada a Receptor de TNF/metabolismo , Alquilantes/toxicidad , Animales , Biomarcadores de Tumor/genética , Movimiento Celular , Proliferación Celular , Dietilnitrosamina/toxicidad , Lipopolisacáridos/toxicidad , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , FN-kappa B/genética , Proteína de Dominio de Muerte Asociada a Receptor de TNF/genética , Células Tumorales Cultivadas
10.
Bioorg Med Chem ; 32: 115972, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33440321

RESUMEN

TGR5 is emerging as an important and promising target for the treatment of diabetes, obesity and other metabolic syndromes. A series of novel 1-benzyl-1H-imidazole-5-carboxamide derivatives was designed, synthesized and evaluated in vitro and in vivo. The most potent compounds 19d and 19e exhibited excellent agonistic activities against hTGR5, which was superior to those of the reference drugs INT-777 and LCA. In addition, compounds 19d and 19e exhibited good selectivity against FXR and presented significant glucose-lowering effects in vivo. Compound 19d could stimulate GLP-1 secretion by activating of TGR5.


Asunto(s)
Diseño de Fármacos , Imidazoles/farmacología , Receptores Acoplados a Proteínas G/agonistas , Animales , Relación Dosis-Respuesta a Droga , Prueba de Tolerancia a la Glucosa , Células HEK293 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estructura Molecular , Receptores Acoplados a Proteínas G/deficiencia , Relación Estructura-Actividad
11.
Proc Natl Acad Sci U S A ; 115(3): 483-488, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29284751

RESUMEN

Shear banding is a ubiquitous phenomenon of severe plastic deformation, and damage accumulation in shear bands often results in the catastrophic failure of a material. Despite extensive studies, the microscopic mechanisms of strain localization and deformation damage in shear bands remain elusive due to their spatial-temporal complexities embedded in bulk materials. Here we conducted synchrotron-based X-ray microdiffraction (µXRD) experiments to map out the 3D lattice strain field with a submicron resolution around fatigue shear bands in a stainless steel. Both in situ and postmortem µXRD results revealed large lattice strain gradients at intersections of the primary and secondary shear bands. Such strain gradients resulted in severe mechanical heterogeneities across the fatigue shear bands, leading to reduced fatigue limits in the high-cycle regime. The ability to spatially quantify the localized strain gradients with submicron resolution through µXRD opens opportunities for understanding the microscopic mechanisms of damage and failure in bulk materials.

12.
Mol Med ; 26(1): 101, 2020 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-33160314

RESUMEN

The gut microbiota regulates the biological processes of organisms acting like 'another' genome, affecting the health and disease of the host. MicroRNAs, as important physiological regulators, have been found to be involved in health and disease. Recently, the gut microbiota has been reported to affect host health by regulating host miRNAs. For example, Fusobacterium nucleatum could aggravate chemoresistance of colorectal cancer by decreasing the expression of miR-18a* and miR-4802. What's more, miRNAs can shape the gut microbiota composition, ultimately affecting the host's physiology and disease. miR-515-5p and miR-1226-5p could promote the growth of Fusobacterium nucleatum (Fn) and Escherichia coli (E.coli), which have been reported to drive colorectal cancer. Here, we will review current findings of the interactions between the gut microbiota and microRNAs and discuss how the gut microbiota-microRNA interactions affect host pathophysiology including intestinal, neurological, cardiovascular, and immune health and diseases.


Asunto(s)
Susceptibilidad a Enfermedades , Microbioma Gastrointestinal , Interacciones Huésped-Patógeno , MicroARNs/genética , Animales , Homeostasis , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Especificidad de Órganos
13.
Am J Pathol ; 189(4): 886-899, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30664863

RESUMEN

Spexin/NPQ is a novel highly conserved neuropeptide. It has a widespread expression in the periphery and central nervous system. However, the effects of central spexin on acute inflammatory pain are still unknown. This study explored the mechanisms and effects of supraspinal spexin on inflammatory pain. The results from the mouse formalin test show that i.c.v. administration of spexin decreased licking/biting time during the late and early phases. The nonamidated spexin had no effect on pain response. The antinociception of spexin was blocked by galanin receptor 3 antagonist SNAP 37889. The Galr3 and Adcy4 mRNA levels in the brain were increased after injection with spexin. The antinociceptive effects of spexin were completely reversed by opioid receptor antagonist naloxone and κ-opioid receptor antagonist nor-binaltorphimine dihydrochloride. Spexin up-regulated the dynorphin and κ-opioid receptor gene and protein expression. PCR array assay and real-time PCR analysis show that spexin up-regulated the mRNA level of the FBJ osteosarcoma oncogene (Fos). T-5224, the inhibitor of c FBJ osteosarcoma oncogene (c-Fos)/activator protein 1 (AP-1), blocked the increased mRNA level of Pdyn and Oprk1 induced by spexin. I.C.V. spexin (2.43 mg/kg) increased the number of c-Fos-positive neurons in most subsections of periaqueductal gray. In addition, in the acetic acid-induced writhing test, i.c.v. spexin produced an antinociceptive effect. Our results indicate that spexin might be a novel neuropeptide with an antinociceptive effect against acute inflammatory pain.


Asunto(s)
Analgésicos/administración & dosificación , Modelos Animales de Enfermedad , Inflamación/complicaciones , Nocicepción/efectos de los fármacos , Dolor/prevención & control , Hormonas Peptídicas/administración & dosificación , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Masculino , Ratones , Dolor/etiología , Dolor/metabolismo , Dimensión del Dolor , Proteínas Proto-Oncogénicas c-fos/genética
14.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905958

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a highly prevalent tumor and is associated with ethnicity, genetics, and dietary intake. Non-coding RNAs (ncRNAs), specifically microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) have been reported as functional regulatory molecules involved in the development of many human cancers, including ESCC. Recently, several ncRNAs have been detected as oncogenes or tumor suppressors in ESCC progression. These ncRNAs influence the expression of specific genes or their associated signaling pathways. Moreover, interactions of ncRNAs are evident in ESCC, as miRNAs regulate the expression of lncRNAs, and further, lncRNAs and circRNAs function as miRNA sponges to compete with the endogenous RNAs. Here, we discuss and summarize the findings of recent investigations into the role of ncRNAs (miRNAs, lncRNAs, and circRNAs) in the development and progression of ESCC and how their interactions regulate ESCC development.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , ARN no Traducido/metabolismo , Apoptosis , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética
15.
Int J Mol Sci ; 19(11)2018 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-30360560

RESUMEN

The HGF/c-MET pathway is active in the development of digestive system cancers, indicating that inhibition of HGF/c-MET signaling may have therapeutic potential. Various HGF/c-MET signaling inhibitors, mainly c-MET inhibitors, have been tested in clinical trials. The observed efficacy and adverse events of some c-MET inhibitors were not very suitable for treating digestive system cancers. The development of new HGF/c-MET inhibitors in preclinical studies may bring promising treatments and synergistic combination (traditional anticancer drugs and c-MET inhibitors) strategies provided anacceptable safety and tolerability. Insights into miRNA biology and miRNA therapeutics have made miRNAs attractive tools to inhibit HGF/c-MET signaling. Recent reports show that several microRNAs participate in inhibiting HGF/c-MET signaling networks through antagonizing c-MET or HGF in digestive system cancers, and the miRNAs-HGF/c-MET axis plays crucial and novel roles for cancer treatment. In the current review, we will discuss recent findings about inhibitors of HGF/c-MET signaling in treating digestive system cancers, and how miRNAs regulate digestive system cancers via mediating HGF/c-MET pathway.


Asunto(s)
Neoplasias del Sistema Digestivo/tratamiento farmacológico , Neoplasias del Sistema Digestivo/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Animales , Antineoplásicos/uso terapéutico , Factor de Crecimiento de Hepatocito/genética , Humanos , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-met/genética
16.
Hepatology ; 57(2): 656-66, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22911633

RESUMEN

UNLABELLED: Gpbar1 (TGR5), a membrane-bound bile acid receptor, is well known for its roles in regulation of energy homeostasis and glucose metabolism. TGR5 activation also inhibits nuclear factor κB (NF-κB)-mediated inflammation. Here we show that TGR5 deficiency enhances chemically induced liver carcinogenesis, and that TGR5 is a negative regulator of signal transducer and activator of transcription 3 (STAT3) signaling. Mice lacking TGR5 were much more susceptible to diethylnitrosamine (DEN)-induced acute liver injury and liver carcinogenesis than wildtype (WT) mice. Consistent with the increasing incidence of liver cancer in TGR5(-/-) mice, hepatocyte death, compensatory proliferation, and gene expression of certain inflammatory cytokines and matrix metalloproteinases were more sensitive to DEN induction in the absence of TGR5 signaling. In vitro, TGR5 activation greatly inhibited proliferation and migration of human liver cancer cells. We then found that TGR5 activation strongly suppressed STAT3 signaling in vitro and in vivo. Furthermore, we observed that TGR5 antagonizes the STAT3 pathway through suppressing STAT3 phosphorylation, its transcription activity, and DNA binding activity, which suggests that TGR5 antagonizes liver tumorigenesis at least in part by inhibiting STAT3 signaling. CONCLUSION: These findings identify TGR5 as a novel liver tumor suppressor that may serve as an attractive therapeutic tool for human liver cancer.


Asunto(s)
Carcinoma Hepatocelular/inducido químicamente , Neoplasias Hepáticas/inducido químicamente , Receptores Acoplados a Proteínas G/deficiencia , Proteínas Supresoras de Tumor/fisiología , Animales , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Dietilnitrosamina , Humanos , Fallo Hepático Agudo/inducido químicamente , Ratones , Fosforilación , Factor de Transcripción STAT3/fisiología
17.
Adv Sci (Weinh) ; 11(28): e2402162, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708715

RESUMEN

High-performance soft magnetic materials are important for energy conservation and emission reduction. One challenge is achieving a combination of reliable temperature stability, high resistivity, high Curie temperature, and high saturation magnetization in a single material, which often comes at the expense of intrinsic coercivity-a typical trade-off in the family of soft magnetic materials with homogeneous microstructures. Herein, a nanostructured FeCoNiSiAl complex concentrated alloy is developed through a hierarchical structure strategy. This alloy exhibits superior soft magnetic properties up to 897 K, maintaining an ultra-low intrinsic coercivity (13.6 A m-1 at 297 K) over a wide temperature range, a high resistivity (138.08 µΩ cm-1 at 297 K) and the saturation magnetization with only a 16.7% attenuation at 897 K. These unusual property combinations are attributed to the dual-magnetic-state nature with exchange softening due to continuous crystal ordering fluctuations at the atomic scale. By deliberately controlling the microstructure, the comprehensive performance of the alloy can be tuned and controlled. The research provides valuable guidance for the development of soft magnetic materials for high-temperature applications and expands the potential applications of related functional materials in the field of sustainable energy.

18.
Elife ; 132024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949655

RESUMEN

Secreted chemokines form concentration gradients in target tissues to control migratory directions and patterns of immune cells in response to inflammatory stimulation; however, how the gradients are formed is much debated. Heparan sulfate (HS) binds to chemokines and modulates their activities. In this study, we investigated the roles of HS in the gradient formation and chemoattractant activity of CCL5 that is known to bind to HS. CCL5 and heparin underwent liquid-liquid phase separation and formed gradient, which was confirmed using CCL5 immobilized on heparin-beads. The biological implication of HS in CCL5 gradient formation was established in CHO-K1 (wild-type) and CHO-677 (lacking HS) cells by Transwell assay. The effect of HS on CCL5 chemoattractant activity was further proved by Transwell assay of human peripheral blood cells. Finally, peritoneal injection of the chemokines into mice showed reduced recruitment of inflammatory cells either by mutant CCL5 (lacking heparin-binding sequence) or by addition of heparin to wild-type CCL5. Our experimental data propose that co-phase separation of CCL5 with HS establishes a specific chemokine concentration gradient to trigger directional cell migration. The results warrant further investigation on other heparin-binding chemokines and allows for a more elaborate insight into disease process and new treatment strategies.


Asunto(s)
Quimiocina CCL5 , Quimiotaxis , Cricetulus , Heparitina Sulfato , Quimiocina CCL5/metabolismo , Quimiocina CCL5/genética , Animales , Heparitina Sulfato/metabolismo , Humanos , Células CHO , Ratones , Heparina/metabolismo , Heparina/farmacología , Separación de Fases
19.
Hepatology ; 56(6): 2336-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22711662

RESUMEN

UNLABELLED: Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily and is the primary bile acid receptor. We previously showed that FXR was required for the promotion of liver regeneration/repair after physical resection or liver injury. However, the mechanism by which FXR promotes liver regeneration/repair is still unclear. Here we show that both hepatic-FXR and intestine-FXR contributed to promote liver regeneration/repair after either 70% partial hepatectomy or carbon tetrachloride-induced liver injury. Hepatic FXR, but not intestine FXR, is required for the induction of Foxm1b gene expression in liver during liver regeneration/repair. In contrast, intestine FXR is activated to induce FGF15 expression in intestine after liver damage. Ectopic expression of FGF15 was able to rescue the defective liver regeneration/repair in intestine-specific FXR null mice. CONCLUSION: These results demonstrate that, in addition to the cell-autonomous effect of hepatic FXR, the endocrine FGF15 pathway activated by FXR in intestine also participates in the promotion of liver regeneration/repair.


Asunto(s)
Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Factores de Crecimiento de Fibroblastos/metabolismo , Mucosa Intestinal/metabolismo , Regeneración Hepática/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Análisis de Varianza , Animales , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/cirugía , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Hepatectomía , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Necrosis , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética
20.
Hepatology ; 56(4): 1499-509, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22488010

RESUMEN

UNLABELLED: Aberrant epigenetic alterations during development may result in long-term epigenetic memory and have a permanent effect on the health of subjects. Constitutive androstane receptor (CAR) is a central regulator of drug/xenobiotic metabolism. Here, we report that transient neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism. CAR activation by neonatal exposure to the CAR-specific ligand 1,4-bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) led to persistently induced expression of the CAR target genes Cyp2B10 and Cyp2C37 throughout the life of exposed mice. These mice showed a permanent reduction in sensitivity to zoxazolamine treatment as adults. Compared with control groups, the induction of Cyp2B10 and Cyp2C37 in hepatocytes isolated from these mice was more sensitive to low concentrations of the CAR agonist TCPOBOP. Accordingly, neonatal activation of CAR led to a permanent increase of histone 3 lysine 4 mono-, di-, and trimethylation and decrease of H3K9 trimethylation within the Cyp2B10 locus. Transcriptional coactivator activating signal cointegrator-2 and histone demethylase JMJD2d participated in this CAR-dependent epigenetic switch. CONCLUSION: Neonatal activation of CAR results in epigenetic memory and a permanent change of liver drug metabolism.


Asunto(s)
Epigénesis Genética/fisiología , Hígado/efectos de los fármacos , Hígado/metabolismo , Piridinas/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Factores de Edad , Animales , Animales Recién Nacidos , Células Cultivadas , Receptor de Androstano Constitutivo , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Femenino , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Piridinas/metabolismo , ARN/metabolismo , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Receptores Citoplasmáticos y Nucleares/efectos de los fármacos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA