Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Public Health ; 12: 1357624, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005990

RESUMEN

Exploring the spatiotemporal dynamic evolution of local climate zones (LCZ) associated with changes in land surface temperature (LST) can help urban planners deeply understand urban climate. Firstly, we monitored the evolution of 3D urban spatial form in Chengdu City, Sichuan Province, China from 2010 to 2020, used the ordinary least squares model to fit the dynamic correlation (DR) between the changes in urban spatial patterns and changes in LST, and revealed the changes of urban spatial patterns closely related to the rise in LST. Secondly, the spatiotemporal patterns of LST were examined by the integration of the Space-Time Cube model and emerging hotspot analysis. Finally, a prediction model based on curve fitting and random forest was integrated to simulate the LST of study area in 2025. Results show the following: the evolution of the urban spatial form consists of three stages: initial incremental expansion, midterm incremental expansion and stock renewal, and late stock renewal and ecological transformation. The influence of the built environment on the rise of LST is greater than that of the natural environment, and the building density has a greater effect than the building height. The overall LST shows a warming trend, and the seven identified LST spatiotemporal patterns are dominated by oscillating and new hotspots patterns, accounting for 51.99 and 11.44% of the study area, respectively. The DR between urban spatial form and LST varies across different time periods and built environment types, whereas the natural environment is always positively correlated with LST. The thermal environment of the city will warm up in the future, and the area affected by the heat island will shift to the central of the city.


Asunto(s)
Ciudades , Análisis Espacio-Temporal , Temperatura , China , Humanos , Planificación de Ciudades , Urbanización , Cambio Climático , Clima
2.
Plant Phenomics ; 6: 0225, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108845

RESUMEN

Marked variations in the 3-dimensional (3D) shape of corn leaves can be discerned as a function of various influences, including genetics, environmental factors, and the management of cultivation processes. However, the causes of these variations remain unclear, primarily due to the absence of quantitative methods to describe the 3D spatial morphology of leaves. To address this issue, this study acquired 3D digitized data of ear-position leaves from 478 corn inbred lines during the grain-filling stage. We propose quantitative calculation methods for 13 3D leaf shape features, such as the leaf length, 3D leaf area, leaf inclination angle, blade-included angle, blade self-twisting, blade planarity, and margin amplitude. Correlation analysis, cluster analysis, and heritability analysis were conducted among the 13 leaf traits. Leaf morphology differences among subpopulations of the inbred lines were also analyzed. The results revealed that the 3D leaf traits are capable of revealing the morphological differences among different leaf surfaces, and the genetic analysis revealed that 84.62% of the 3D phenotypic traits of ear-position leaves had a heritability greater than 0.3. However, the majority of 3D leaf shape traits were strongly affected by environmental conditions. Overall, this study quantitatively investigated 3D leaf shape in corn, providing a reliable basis for further research on the genetic regulation of corn leaf morphology and advancing the understanding of the complex interplay among crop genetics, phenotypes, and the environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA