Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Phytopathology ; 108(8): 972-979, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29561710

RESUMEN

ND2710 is a hard red spring wheat line with a very high level of resistance to Fusarium head blight (FHB). It was selected from the progeny of a cross between ND2603 (an advanced breeding line derived from the Sumai 3/Wheaton cross) and Grandin (a spring wheat cultivar). The FHB resistance of ND2710 is presumably derived from Sumai 3 because the other parents (Grandin and Wheaton) are very susceptible to FHB. To identify and map the quantitative trait loci (QTL) for FHB resistance in ND2710, we developed a mapping population consisting of 233 recombinant inbred lines (RILs) from the cross between ND2710 and the spring wheat cultivar Bobwhite. These RILs along with their parents and checks were evaluated for reactions to FHB in three greenhouse experiments and one field experiment during 2013 to 2014. The population was also genotyped with the wheat 90K iSelect single-nucleotide polymorphism (SNP) assay, and a genetic linkage map was developed with 1,373 non-cosegregating SNP markers, which were distributed on all 21 wheat chromosomes spanning 914.98 centimorgans of genetic distance. Genetic analyses using both phenotypic and genotypic data identified one major QTL (Qfhb.ndwp-3B) on the short arm of chromosome 3B, and three minor QTL (Qfhb.ndwp-6B, Qfhb.ndwp-2A, and Qfhb.ndwp-6A) on 6B, 2A, and 6A, respectively. The major QTL on 3B was detected in all experiments and explained 5 to 20% of the phenotypic variation, while the three minor QTL on 6B, 2A, and 6A explained 5 to 12% phenotypic variation in at least two experiments, except for Qfhb.ndwp-2A, which was only detected in the field experiment. Qfhb.ndwp-3B and Qfhb.ndwp-6B were mapped to the genomic regions containing Fhb1 and Fhb2, respectively, confirming that they originated from Sumai 3. The additive effect of the major and minor QTL may contribute to the high level of FHB resistance in ND2710. The SNP markers closely linked to the FHB resistance QTL will be useful for marker-assisted selection of FHB resistance in wheat breeding programs.


Asunto(s)
Mapeo Cromosómico , Cromosomas de las Plantas/genética , Fusarium , Enfermedades de las Plantas/microbiología , Triticum/genética , Cruzamientos Genéticos , Marcadores Genéticos , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Triticum/microbiología
2.
Nucleic Acids Res ; 38(Web Server issue): W313-20, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20497996

RESUMEN

Transposable elements (TE) exist in the genomes of nearly all eukaryotes. TE mobilization through 'cut-and-paste' or 'copy-and-paste' mechanisms causes their insertions into other repetitive sequences, gene loci and other DNA. An insertion of a TE commonly creates a unique TE junction in the genome. TE junctions are also randomly distributed along chromosomes and therefore useful for genome-wide marker development. Several TE-based marker systems have been developed and applied to genetic diversity assays, and to genetic and physical mapping. A software tool 'RJPrimers' reported here allows for accurate identification of unique repeat junctions using BLASTN against annotated repeat databases and a repeat junction finding algorithm, and then for fully automated high-throughput repeat junction-based primer design using Primer3 and BatchPrimer3. The software was tested using the rice genome and genomic sequences of Aegilops tauschii. Over 90% of repeat junction primers designed by RJPrimers were unique. At least one RJM marker per 10 Kb sequence of A. tauschii was expected with an estimate of over 0.45 million such markers in a genome of 4.02 Gb, providing an almost unlimited source of molecular markers for mapping large and complex genomes. A web-based server and a command line-based pipeline for RJPrimers are both available at http://wheat.pw.usda.gov/demos/RJPrimers/.


Asunto(s)
Cartilla de ADN/química , Secuencias Repetitivas Esparcidas , Reacción en Cadena de la Polimerasa , Programas Informáticos , Marcadores Genéticos , Genoma de Planta , Internet , Oryza/genética , Poaceae/genética
3.
Funct Integr Genomics ; 10(1): 111-22, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19707805

RESUMEN

The wheat high molecular weight (HMW) glutenins are important seed storage proteins that determine bread-making quality in hexaploid wheat (Triticum aestivum). In this study, detailed comparative sequence analyses of large orthologous HMW glutenin genomic regions from eight grass species, representing a wide evolutionary history of grass genomes, reveal a number of lineage-specific sequence changes. These lineage-specific changes, which resulted in duplications, insertions, and deletions of genes, are the major forces disrupting gene colinearity among grass genomes. Our results indicate that the presence of the HMW glutenin gene in Triticeae genomes was caused by lineage-specific duplication of a globulin gene. This tandem duplication event is shared by Brachypodium and Triticeae genomes, but is absent in rice, maize, and sorghum, suggesting the duplication occurred after Brachypodium and Triticeae genomes diverged from the other grasses ~35 Ma ago. Aside from their physical location in tandem, the sequence similarity, expression pattern, and conserved cis-acting elements responsible for endosperm-specific expression further support the paralogous relationship between the HMW glutenin and globulin genes. While the duplicated copy in Brachypodium has apparently become nonfunctional, the duplicated copy in wheat has evolved to become the HMW glutenin gene by gaining a central prolamin repetitive domain.


Asunto(s)
Secuencia Conservada , Genes de Plantas/genética , Sitios Genéticos/genética , Globulinas/genética , Poaceae/genética , Proteínas de Almacenamiento de Semillas/genética , Secuencia de Aminoácidos , Secuencia de Bases , ADN Intergénico/genética , Evolución Molecular , Glútenes/química , Modelos Genéticos , Datos de Secuencia Molecular , Peso Molecular , Regiones Promotoras Genéticas/genética , Homología de Secuencia de Ácido Nucleico
4.
Plant Genome ; 12(1)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30951084

RESUMEN

The appearance of highly virulent and more aggressive races of f. sp. () during the last two decades has led to stripe rust epidemics worldwide and to the rapid erosion of effective resistance genes. In this study, we mapped an adult-plant resistance locus from the Argentinean wheat ( L.) cultivar Klein Chajá, which is effective against these new races. By using wheat exome capture data and a large population of 2480 segregating plants (4960 gametes), we mapped within a 0.24-cM region [332 kb in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0] on chromosome arm 1BL. This region overlaps with current maps of the adult-plant resistance gene , which has remained effective for more than 60 yr. An allelism test failed to find recombination between and and yielded similar resistance phenotypes for the two loci. These results, together with similar haplotypes in the candidate region, suggested that and might represent the same gene. However, we cannot rule out the possibility of tightly linked but different genes because most of the 13 genes in the candidate region are annotated with functions associated with disease resistance. To evaluate their potential as candidate genes, we characterized their polymorphisms between resistant and susceptible haplotypes. Finally, we used these polymorphisms to develop high-throughput markers to accelerate the deployment of these resistance loci in wheat breeding programs.


Asunto(s)
Basidiomycota , Cromosomas de las Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Sitios Genéticos , Marcadores Genéticos , Haplotipos , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo Genético , Triticum/microbiología
5.
Sci Rep ; 8(1): 7255, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29740041

RESUMEN

The use of Bt proteins in crops has revolutionized insect pest management by offering effective season-long control. However, field-evolved resistance to Bt proteins threatens their utility and durability. A recent example is field-evolved resistance to Cry1Fa and Cry1A.105 in fall armyworm (Spodoptera frugiperda). This resistance has been detected in Puerto Rico, mainland USA, and Brazil. A S. frugiperda population with suspected resistance to Cry1Fa was sampled from a maize field in Puerto Rico and used to develop a resistant lab colony. The colony demonstrated resistance to Cry1Fa and partial cross-resistance to Cry1A.105 in diet bioassays. Using genetic crosses and proteomics, we show that this resistance is due to loss-of-function mutations in the ABCC2 gene. We characterize two novel mutant alleles from Puerto Rico. We also find that these alleles are absent in a broad screen of partially resistant Brazilian populations. These findings confirm that ABCC2 is a receptor for Cry1Fa and Cry1A.105 in S. frugiperda, and lay the groundwork for genetically enabled resistance management in this species, with the caution that there may be several distinct ABCC2 resistances alleles in nature.


Asunto(s)
Control de Insectos , Insecticidas/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Spodoptera/química , Animales , Bacillus thuringiensis/química , Bacillus thuringiensis/genética , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Brasil , Endotoxinas/genética , Proteínas Hemolisinas/genética , Humanos , Resistencia a los Insecticidas/genética , Insecticidas/efectos adversos , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Mutación , Proteómica , Puerto Rico , Spodoptera/genética , Estados Unidos
6.
Mol Breed ; 35(6): 141, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074724

RESUMEN

Genetic male sterility (GMS) in cotton mediated by two homozygous recessive genes, ms5ms5 and ms6ms6, is expressed as non-dehiscent anthers and unviable pollen grains. Sequence analysis on ms5 and ms6 loci in Gossypium hirsutum was conducted to reveal genomic variation at these two loci between GMS and wild-type G. hirsutum inbred lines, and sequence polymorphism linked to ms5 on A12 and ms6 on D12 was revealed. A haplotype marker set that consisted of four SNPs targeting both ms5 and ms6 gene regions was developed and validated for association with GMS in cotton. Predictability of GMS phenotype by this haplotype SNP set was over 99 %. GMS haplotype marker set can serve as a high-throughput molecular breeding tool to select GMS individuals and improve hybrid production efficiency.

7.
G3 (Bethesda) ; 5(3): 399-405, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25566794

RESUMEN

Western corn rootworm (WCR) is a major maize (Zea mays L.) pest leading to annual economic losses of more than 1 billion dollars in the United States. Transgenic maize expressing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are widely used for the management of WCR. However, cultivation of Bt-expressing maize places intense selection pressure on pest populations to evolve resistance. Instances of resistance to Bt toxins have been reported in WCR. Developing genetic markers for resistance will help in characterizing the extent of existing issues, predicting where future field failures may occur, improving insect resistance management strategies, and in designing and sustainably implementing forthcoming WCR control products. Here, we discover and validate genetic markers in WCR that are associated with resistance to the Cry3Bb1 Bt toxin. A field-derived WCR population known to be resistant to the Cry3Bb1 Bt toxin was used to generate a genetic map and to identify a genomic region associated with Cry3Bb1 resistance. Our results indicate that resistance is inherited in a nearly recessive manner and associated with a single autosomal linkage group. Markers tightly linked with resistance were validated using WCR populations collected from Cry3Bb1 maize fields showing significant WCR damage from across the US Corn Belt. Two markers were found to be correlated with both diet (R2 = 0.14) and plant (R2 = 0.23) bioassays for resistance. These results will assist in assessing resistance risk for different WCR populations, and can be used to improve insect resistance management strategies.


Asunto(s)
Escarabajos/genética , Endotoxinas/toxicidad , Genes de Insecto , Resistencia a los Insecticidas/genética , Animales , Escarabajos/efectos de los fármacos , Marcadores Genéticos , Polimorfismo de Nucleótido Simple
8.
PLoS One ; 8(1): e54101, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326580

RESUMEN

Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.


Asunto(s)
Genoma de Planta , Elementos Aisladores/genética , Poaceae/genética , Retroelementos/genética , Secuencias Repetidas Terminales/genética , Brachypodium/genética , Humanos , Oryza/genética , Análisis de Secuencia de ADN , Sorghum/genética
9.
Genome ; 52(6): 576-87, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19483776

RESUMEN

In hexaploid wheat (Triticum aestivum L.) (AABBDD, C=17 000 Mb), repeat DNA accounts for approximately 90% of the genome, of which transposable elements (TEs) constitute 60%-80%. Despite the dynamic evolution of TEs, our previous study indicated that the majority of TEs are conserved and collinear between the homologous wheat genomes, based on identical insertion patterns. In this study, we exploited the unique and abundant TE insertion junction regions identified from diploid Aegilops tauschii to develop genome-specific repeat DNA junction markers (RJM) for use in hexaploid wheat. In this study, both BAC end and random shotgun sequences were used to search for RJM. Of the 300 RJM primer pairs tested, 269 (90%) amplified single bands from diploid Ae. tauschii. Of these 269 primer pairs, 260 (97%) amplified hexaploid wheat and 9 (3%) amplified Ae. tauschii only. Among the RJM primers that amplified hexaploid wheat, 88% were successfully assigned to individual chromosomes of the hexaploid D genome. Among the 38 RJM primers mapped on chromosome 6D, 31 (82%) were unambiguously mapped to delineated bins of the chromosome using various wheat deletion lines. Our results suggest that the unique RJM derived from the diploid D genome could facilitate genetic, physical, and radiation mapping of the hexaploid wheat D genome.


Asunto(s)
Elementos Transponibles de ADN/genética , Genoma de Planta/genética , Reacción en Cadena de la Polimerasa/métodos , Secuencias Repetitivas de Ácidos Nucleicos/genética , Triticum/genética , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Cromosomas de las Plantas , ADN de Plantas/genética , Marcadores Genéticos , Ploidias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA