Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 32(20): 5541-5557, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37691604

RESUMEN

Hybrid zones are important windows into the evolutionary dynamics of populations, revealing how processes like introgression and adaptation structure population genomic variation. Importantly, they are useful for understanding speciation and how species respond to their environments. Here, we investigate two closely related sea star species, Asterias rubens and A. forbesi, distributed along rocky European and North American coastlines of the North Atlantic, and use genome-wide molecular markers to infer the distribution of genomic variation within and between species in this group. Using genomic data and environmental niche modelling, we document hybridization occurring between northern New England and the southern Canadian Maritimes. We investigate the factors that maintain this hybrid zone, as well as the environmental variables that putatively drive selection within and between species. We find that the two species differ in their environmental niche breadth; Asterias forbesi displays a relatively narrow environmental niche while conversely, A. rubens has a wider niche breadth. Species distribution models accurately predict hybrids to occur within environmental niche overlap, thereby suggesting environmental selection plays an important role in the maintenance of the hybrid zone. Our results imply that the distribution of genomic variation in North Atlantic sea stars is influenced by the environment, which will be crucial to consider as the climate changes.

2.
Dis Aquat Organ ; 154: 15-31, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37260163

RESUMEN

Declining coral populations worldwide place a special premium on identifying risks and drivers that precipitate these declines. Understanding the relationship between disease outbreaks and their drivers can help to anticipate when the risk of a disease pandemic is high. Populations of the iconic branching Caribbean elkhorn coral Acropora palmata have collapsed in recent decades, in part due to white pox disease (WPX). To assess the role that biotic and abiotic factors play in modulating coral disease, we present a predictive model for WPX in A. palmata using 20 yr of disease surveys from the Florida Keys plus environmental information collected simultaneously in situ and via satellite. We found that colony size was the most influential predictor for WPX occurrence, with larger colonies being at higher risk. Water quality parameters of dissolved oxygen saturation, total organic carbon, dissolved inorganic nitrogen, and salinity were implicated in WPX likelihood. Both low and high wind speeds were identified as important environmental drivers of WPX. While high temperature has been identified as an important cause of coral mortality in both bleaching and disease scenarios, our model indicates that the relative influence of HotSpot (positive summertime temperature anomaly) was low and actually inversely related to WPX risk. The predictive model developed here can contribute to enabling targeted strategic management actions and disease surveillance, enabling managers to treat the disease or mitigate disease drivers, thereby suppressing the disease and supporting the persistence of corals in an era of myriad threats.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Florida/epidemiología , Región del Caribe/epidemiología , Factores de Riesgo
3.
Mol Ecol ; 30(5): 1155-1173, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33382161

RESUMEN

Freshwater unionid bivalves currently face severe anthropogenic challenges. Over 70% of species in the United States are threatened, endangered or extinct due to pollution, damming of waterways and overfishing. These species are notable for their unusual life history strategy, parasite-host co-evolution and biparental mitochondrial inheritance. Among this clade, the washboard mussel Megalonaias nervosa is one species that remains prevalent across the Southeastern United States, with robust population sizes. We have created a reference genome for M. nervosa to determine how genome content has evolved in the face of these widespread environmental challenges. We observe dynamic changes in genome content, with a burst of recent transposable element proliferation causing a 382 Mb expansion in genome content. Birth-death models suggest rapid expansions among gene families, with a mutation rate of 1.16 × 10-8 duplications per gene per generation. Cytochrome P450 gene families have experienced exceptional recent amplification beyond expectations based on genome-wide birth-death processes. These genes are associated with increased rates of amino acid changes, a signature of selection driving evolution of detox genes. Fitting evolutionary models of adaptation from standing genetic variation, we can compare adaptive potential across species and mutation types. The large population size in M. nervosa suggests a 4.7-fold advantage in the ability to adapt from standing genetic variation compared with a low diversity endemic E. hopetonensis. Estimates suggest that gene family evolution may offer an exceptional substrate of genetic variation in M. nervosa, with Psgv  = 0.185 compared with Psgv  = 0.067 for single nucleotide changes. Hence, we suggest that gene family evolution is a source of 'hopeful monsters' within the genome that may facilitate adaptation when selective pressures shift. These results suggest that gene family expansion is a key driver of adaptive evolution in this key species of freshwater Unionidae that is currently facing widespread environmental challenges. This work has clear implications for conservation genomics on freshwater bivalves as well as evolutionary theory. This genome represents a first step to facilitate reverse ecological genomics in Unionidae and identify the genetic underpinnings of phenotypic diversity.


Asunto(s)
Adaptación Fisiológica , Familia de Multigenes , Unionidae , Animales , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Agua Dulce , Sudeste de Estados Unidos , Unionidae/genética
4.
Mol Ecol ; 29(6): 1087-1102, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32069379

RESUMEN

Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as "asteroid idiopathic wasting syndrome" (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell-tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation for Pisaster ochraceus, along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments in P. ochraceus, and DGE associated with wasting in another asteroid Pycnopodia helianthoides. In P. ochraceus, we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting-associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co-occur with differentially expressed genes. In cross-species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context-dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.


Asunto(s)
Estrellas de Mar/genética , Síndrome Debilitante/veterinaria , Animales , California , Ciencias Forenses , Genoma , Genoma Mitocondrial , Genómica , Océano Pacífico , Transcriptoma
5.
Mol Ecol ; 25(9): 2081-92, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26923636

RESUMEN

Androdioecy was first described by Darwin in his seminal work on barnacle diversity; he identified males and hermaphrodites in the same reproductive population. Today, we realize that many androdioecious plants and animals share astonishing similarities, particularly with regard to their evolutionary history and mating system. Notably, these species were ancestrally dioecious, and their mating system has the following characteristics: hermaphrodites self-fertilize frequently, males are more successful in large mating groups, and males have a mating advantage. A male mating advantage makes androdioecy more likely to persist over evolutionary times. Androdioecious barnacles, however, appear to persist as an outlier with a different evolutionary trajectory: they originate from hermaphroditic species. Although sexual systems of androdioecious barnacles are known, no information on the mating system of androdioecious barnacles is available. This study assessed the mating system of the androdioecious barnacle Chelonibia testudinaria. In contrast to other androdioecious species, C. testudinaria does not self-fertilize, males do not have a mating advantage over hermaphrodites, and the average mating group is quite small, averaging only three individuals. Mating success is increased by proximity to the mate and penis length. Taken together, the mating system of C. testudinaria is unusual in comparison with other androdioecious plants and animals, and the lack of a male mating advantage suggests that the mating system alone does not provide an explanation for the maintenance of androdioecy in this species. Instead, we propose that sex-specific life history equalizes male and hermaphroditic overall fitness.


Asunto(s)
Organismos Hermafroditas/fisiología , Thoracica/fisiología , Animales , Femenino , Masculino , Reproducción
6.
Ecology ; 95(4): 1022-32, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24933820

RESUMEN

The evolutionary pressures that drive long larval planktonic durations in some coastal marine organisms, while allowing direct development in others, have been vigorously debated. We introduce into the argument the asymmetric dispersal of larvae by coastal currents and find that the strength of the currents helps determine which dispersal strategies are evolutionarily stable. In a spatially and temporally uniform coastal ocean of finite extent, direct development is always evolutionarily stable. For passively drifting larvae, long planktonic durations are stable when the ratio of mean to fluctuating currents is small and the rate at which larvae increase in size in the plankton is greater than the mortality rate (both in units of per time). However, larval behavior that reduces downstream larval dispersal for a given time in plankton will be selected for, consistent with widespread observations of behaviors that reduce dispersal of marine larvae. Larvae with long planktonic durations are shown to be favored not for the additional dispersal they allow, but for the additional fecundity that larval feeding in the plankton enables. We analyzed the spatial distribution of larval life histories in a large database of coastal marine benthic invertebrates and documented a link between ocean circulation and the frequency of planktotrophy in the coastal ocean. The spatial variation in the frequency of species with planktotrophic larvae is largely consistent with our theory; increases in mean currents lead to a decrease in the fraction of species with planktotrophic larvae over a broad range of temperatures.


Asunto(s)
Invertebrados/fisiología , Adaptación Fisiológica , Animales , Bases de Datos Factuales , Demografía , Aptitud Genética , Larva/crecimiento & desarrollo , Modelos Biológicos , Océanos y Mares , Temperatura , Zooplancton
7.
Mol Ecol ; 22(10): 2627-39, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23551417

RESUMEN

Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.


Asunto(s)
Daphnia/genética , Ecosistema , Extinción Biológica , Variación Genética , Genética de Población , Modelos Genéticos , Animales , Teorema de Bayes , Simulación por Computador , Finlandia , Flujo Génico/genética , Densidad de Población
8.
J Hered ; 104(4): 572-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667051

RESUMEN

The fluorescent protein (FP) gene family is a highly diverse group of proteins whose expression govern color diversity in corals. Here, we examine the genetic diversity of FPs and the extent to which it can be used to assess phylogenetic relationships within the coral genus Agaricia. Tissue samples were collected throughout the Florida Keys from a wide range of phenotypes within the genus Agaricia (A. agaricites [n = 7], A. fragilis [n = 13], and A. lamarcki [n = 2]), as well as the confamilial species Helioseris cucullata (n = 3). Primers were developed from published cDNA sequences to amplify a region of coding and noncoding sequences of FPs. Cloning reactions were performed to capture the multiple copies of FPs and allele diversity. In the resulting 116 cloned sequences, we identified a 179-bp coding region for phylogenetic analysis. Three distinct clades were found in all 3 species of Agaricia, potentially representing 3 copies of the FP gene. Of the 3 gene copies, 2 contain distinct subclades that display reciprocal monophyly between A. agaricites and A. fragilis, whereas A. lamarcki is polyphyletic. Further resolution of the species phylogeny is necessary to fully understand how genetic diversity within this gene family is distributed among taxa and habitats.


Asunto(s)
Antozoos/genética , Variación Genética , Proteínas Luminiscentes/genética , Secuencia de Aminoácidos , Animales , Antozoos/clasificación , Región del Caribe , Evolución Molecular , Proteínas Fluorescentes Verdes/genética , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia
9.
Rev Biol Trop ; 61(1): 75-88, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23894964

RESUMEN

A large section of the tropical Eastern Pacific coastline is nearly devoid of reef or consolidated habitat, and is known as the Central American Gap as it is associated with a biogeographic transition in fish and invertebrate species. We analyze phylogeographic data for intertidal barnacles (Chthamalus) to identify relevant temporal patterns that describe the origins of this biogeographic transition (the Mexican-Panamic Transition Zone). These contrasts of populations on either side of the transition zone include two pairs of closely related species (C. panamensis and C. hedgecocki; C. southwardorum and a Southern form of C. southwardorum), as well as gene flow data within one species (C. panamensis) that currently is found on both sides of the boundary between provinces. Using sequence data from a prior phylogenetic study, we used traditional (net nucleotide divergence) measures as well as coalescent analyses that incorporate the isolation-migration model to identify the likely time of separation between Northern and Southern taxa in two species pairs. A total of 67 individuals were sequenced at two mitochondrial (cytochrome c oxidase I, 16S) and one nuclear (elongation factor 1-alpha) gene regions. Our analyses indicate that the regional isolation of these intertidal barnacles occurred approximately 315-400kya, with subsequent expansion of C. panamensis from the Southern region into the North much more recently. There are insufficient survey data to conclusively document the absence of species from this group within the Central American Gap region near the Gulf of Tehuantepec. However, appropriate habitat is quite sparse in this region and other environmental factors, including upwelling and water temperature, are likely to be associated with isolation of many species in the Mexican and Panamic provinces sensu stricto. Some taxa may maintain gene flow across this region, but very few genetic studies have been completed on such taxa. Until further work is done, distinguishing between prior hypotheses of a faunal gap, or a faunal transition zone, is somewhat speculative. Additional taxonomic revision will be necessary in Chthamalus but is beyond the scope of this paper.


Asunto(s)
Thoracica/genética , Migración Animal , Animales , Evolución Biológica , México , Panamá , Filogeografía , Thoracica/clasificación
10.
Ecol Evol ; 13(2): e9856, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36844674

RESUMEN

As global temperatures warm, species must adapt to a changing climate or transition to a different location suitable for their survival. Understanding the extent to which species are able to do so, particularly keystone species, is imperative to ensuring the survival of key ecosystems. The ribbed mussel Geukensia demissa is an integral part of salt marshes along the Atlantic coast of North America. Spatial patterns of genomic and phenotypic divergence have been previously documented, although their link with coastal environmental variation is unknown. Here, we study how populations of G. demissa in the northern (Massachusetts) and southern (Georgia) portions of the species range respond to changes in temperature. We combine assays of variation in oxygen consumption and RNA transcriptomic data with genomic divergence analyses to identify how separate populations of G. demissa may vary in distinct thermal environments. Our results show differences in constitutive oxygen consumption between mussels from Georgia and Massachusetts, as well as shared and disparate patterns of gene expression across temperature profiles. We also find that metabolic genes seem to be a strong component of divergence between these two populations. Our analysis highlights the importance of studying integrative patterns of genomic and phenotypic variation in species that are key for particular ecosystems, and how they might respond to further changes in climate.

11.
Artículo en Inglés | MEDLINE | ID: mdl-37886352

RESUMEN

We present the complete genome sequences of Geukensia demissa and Geukensia granosissima. Illumina sequencing was performed on genetic material from museum specimens. The reads were assembled using a de novo method followed by a finishing step. The raw and assembled data are available via Genbank.

12.
Biol Bull ; 244(3): 143-163, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38457680

RESUMEN

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Estudios Retrospectivos , Dinámica Poblacional , Temperatura
13.
Mol Ecol ; 21(22): 5447-60, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23057973

RESUMEN

In many species, alternative developmental pathways lead to the production of two distinct phenotypes, promoting the evolution of morphological novelty and diversification. Offspring type in marine invertebrates influences transport time by ocean currents, which dictate dispersal potential and gene flow, and thus has sweeping evolutionary effects on the potential for local adaptation and on rates of speciation, extinction and molecular evolution. Here, we use the polychaete Streblospio benedicti to investigate the effects of dimorphic offspring type on gene flow and genetic structure in coastal populations. We use 84 single nucleotide polymorphism (SNP) markers for this species to assay populations on the East and West Coasts of the United States. Using these markers, we found that in their native East Coast distribution, populations of S. benedicti have high-population genetic structure, but this structure is associated primarily with geographic separation rather than developmental differences. Interestingly, very little genetic differentiation is recovered between individuals of different development types when they occur in the same or nearby populations, further supporting that this is a true case of poecilogony. In addition, we were able to demonstrate that the recently introduced (~100 ya) West Coast populations probably originated from a lecithotrophic population near Delaware.


Asunto(s)
Flujo Génico , Genética de Población , Poliquetos/genética , Animales , Técnicas de Genotipaje , Geografía , Larva/genética , Larva/crecimiento & desarrollo , Fenotipo , Poliquetos/crecimiento & desarrollo , Polimorfismo de Nucleótido Simple , Estados Unidos
14.
J Hered ; 103(6): 887-97, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23129752

RESUMEN

Genetic datasets can be used to date evolutionary events, even on recent time scales if sufficient data are available. We used statistics calculated from multilocus microsatellite datasets to estimate population ages in data generated through coalescent simulations and in samples from populations of known age in a metapopulation of Daphnia magna in Finland. Our simulation results show that age estimates improve with additional loci and define a time frame over which these statistics are most useful. On the most recent time scales, assumptions regarding the model of mutation (infinite sites vs. stepwise mutation) have little influence on estimated ages. In older populations, size homoplasy among microsatellite alleles results in a downwards bias for estimates based on the infinite sites model (ISM). In the Finnish D. magna metapopulation, our genetically derived estimated ages were biased upwards. Potential sources of this bias include the underlying model of mutation, gene flow, founder size, and the possibility of persistent source populations in the system. Our simulated data show that genetic age estimation is possible, even for very young populations, but our empirical data highlight the importance of factors such as migration when these statistics are applied in natural populations.


Asunto(s)
Daphnia/genética , Genética de Población , Modelos Genéticos , Animales , Simulación por Computador , Finlandia , Flujo Génico , Repeticiones de Microsatélite , Modelos Estadísticos , Mutación
15.
Biol Bull ; 243(3): 328-338, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36716481

RESUMEN

AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events. Here, we use reduced-representation sequencing to identify potential short-term genetic impacts of a mass mortality event associated with a sea star wasting outbreak. We tested for changes in the population for genetic differentiation, diversity, and effective population size between pre-sea star wasting and post-sea star wasting populations of Pisaster ochraceus-a species that suffered high sea star wasting-associated mortality (75%-100% at 80% of sites). We detected no significant population-based genetic differentiation over the spatial scale sampled; however, the post-sea star wasting population tended toward more differentiation across sites than the pre-sea star wasting population. Genetic estimates of effective population size did not detectably change, consistent with theoretical expectations; however, rare alleles were lost. While we were unable to detect significant population-based genetic differentiation or changes in effective population size over this short time period, the genetic burden of this mass mortality event may be borne by future generations, unless widespread recruitment mitigates the population decline. Prior results from P. ochraceus indicated that natural selection played a role in altering allele frequencies following this mass mortality event. In addition to the role of selection found in a previous study on the genomic impacts of sea star wasting on P. ochraceus, our current study highlights the potential role the stochastic loss of many individuals plays in altering how genetic variation is structured across the landscape. Future genetic monitoring is needed to determine long-term genetic impacts in this long-lived species. Given the increased frequency of mass mortality events, it is important to implement demographic and genetic monitoring strategies that capture baselines and background dynamics to better contextualize species' responses to large perturbations.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Estrellas de Mar/genética , Densidad de Población , Genética de Población
16.
Biol Bull ; 243(3): 315-327, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36716486

RESUMEN

AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact. Our analyses show no evidence for a phylogenetic association with sea star wasting impact, but there does appear to be phylogenetic association for a subset of asteroid life-history traits, including diet, substrate, and reproductive season. We found no relationship between sea star wasting and developmental mode, diet, pelagic larval duration, or substrate but did find a relationship with minimum depth, reproductive season, and rugosity (or surface complexity). Species with the greatest sea star wasting impacts tend to have shallower minimum depth distributions, they tend to have their median reproductive period 1.5 months earlier, and they tend to have higher rugosities relative to species less affected by sea star wasting. Fully understanding sea star wasting remains challenging, in part because dramatic gaps still exist in our understanding of the basic biology and phylogeny of asteroids. Future studies would benefit from a more robust phylogenetic understanding of sea stars, as well as leveraging intra- and interspecific comparative transcriptomics and genomics to elucidate the molecular pathways responding to sea star wasting.


Asunto(s)
Estrellas de Mar , Síndrome Debilitante , Animales , Estrellas de Mar/genética , Filogenia , Síndrome Debilitante/veterinaria , Perfilación de la Expresión Génica , Fenotipo
17.
Biol Bull ; 243(1): 50-75, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36108034

RESUMEN

AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Biología
18.
Mol Ecol ; 19(20): 4505-19, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20735734

RESUMEN

Intertidal and subtidal communities of the western and eastern coasts of the North Atlantic Ocean were greatly affected by Pleistocene glaciations, with some taxa persisting on both coasts, and others recolonizing after being extirpated on one coast during the Last Glacial Maximum. In the original spirit of comparative phylogeography, we conducted a comparative analysis using mtDNA sequence data and a hierarchical approximate Bayesian computation (ABC) approach for testing these two scenarios across 12 intertidal and subtidal coastal invertebrates spanning the North Atlantic to determine the temporal dynamics of species membership of these two ephemeral communities. Conditioning on a low gene-flow model, our results suggested that a colonization or mitochondrial selective sweep history was predominant across all taxa, with only the bivalve mollusc Mytilus edulis showing a history of trans-Atlantic persistence. Conditioning on a high gene-flow model weakened the support for this assemblage-level demographic history. The predominance of a colonization-type history also highlights concerns about analyses based on single-locus data where genetic hitchhiking may be incorrectly inferred as colonization. In conclusion, driving factors in shifting species range distributions and membership of ephemeral coastal communities could be species-specific environmental tolerances, species interactions, and/or stochastic demographic extinction. Through a re-examination of a long-standing question of North Atlantic phylogeography, we highlight the flexibility and statistical honesty of using a model-based ABC approach.


Asunto(s)
Teorema de Bayes , ADN Mitocondrial/genética , Modelos Genéticos , Mytilus/genética , Filogeografía , Animales , Océano Atlántico , Simulación por Computador , Flujo Génico , Invertebrados/genética , Análisis de Secuencia de ADN
19.
Nat Ecol Evol ; 4(9): 1196-1203, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32632257

RESUMEN

The distance travelled by marine larvae varies by seven orders of magnitude. Dispersal shapes marine biodiversity, and must be understood if marine systems are to be well managed. Because warmer temperatures quicken larval development, larval durations might be systematically shorter in the tropics relative to those at high latitudes. Nevertheless, life history and hydrodynamics also covary with latitude-these also affect dispersal, precluding any clear expectation of how dispersal changes at a global scale. Here we combine data from the literature encompassing >750 marine organisms from seven phyla with oceanographic data on current speeds, to quantify the overall latitudinal gradient in larval dispersal distance. We find that planktonic duration increased with latitude, confirming predictions that temperature effects outweigh all others across global scales. However, while tropical species have the shortest planktonic durations, realized dispersal distances were predicted to be greatest in the tropics and at high latitudes, and lowest at mid-latitudes. At high latitudes, greater dispersal distances were driven by moderate current speed and longer planktonic durations. In the tropics, fast currents overwhelmed the effect of short planktonic durations. Our results contradict previous hypotheses based on biology or physics alone; rather, biology and physics together shape marine dispersal patterns.


Asunto(s)
Biodiversidad , Plancton , Animales , Organismos Acuáticos , Larva , Temperatura
20.
Front Microbiol ; 11: 610009, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33488550

RESUMEN

Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O2 conditions in aquaria, suggesting that small perturbations in dissolved O2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013-2014 bore δ15N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O2 diffusion limitation may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA