Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Blood ; 137(1): 126-137, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-32785680

RESUMEN

Graft-versus-host disease (GVHD) is a prominent barrier to allogeneic hematopoietic stem cell transplantation (AHSCT). Definitive diagnosis of GVHD is invasive, and biopsies of involved tissues pose a high risk of bleeding and infection. T cells are central to GVHD pathogenesis, and our previous studies in a chronic GVHD mouse model showed that alloreactive CD4+ T cells traffic to the target organs ahead of overt symptoms. Because increased glycolysis is an early feature of T-cell activation, we hypothesized that in vivo metabolic imaging of glycolysis would allow noninvasive detection of liver GVHD as activated CD4+ T cells traffic into the organ. Indeed, hyperpolarized 13C-pyruvate magnetic resonance imaging detected high rates of conversion of pyruvate to lactate in the liver ahead of animals becoming symptomatic, but not during subsequent overt chronic GVHD. Concomitantly, CD4+ T effector memory cells, the predominant pathogenic CD4+ T-cell subset, were confirmed to be highly glycolytic by transcriptomic, protein, metabolite, and ex vivo metabolic activity analyses. Preliminary data from single-cell sequencing of circulating T cells in patients undergoing AHSCT also suggested that increased glycolysis may be a feature of incipient acute GVHD. Metabolic imaging is being increasingly used in the clinic and may be useful in the post-AHSCT setting for noninvasive early detection of GVHD.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Enfermedad Injerto contra Huésped/diagnóstico por imagen , Enfermedad Injerto contra Huésped/metabolismo , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Animales , Isótopos de Carbono , Glucólisis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Activación de Linfocitos/inmunología , Ratones , Análisis de la Célula Individual/métodos , Trasplante Homólogo
2.
Sci Rep ; 13(1): 14699, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679461

RESUMEN

In vivo deuterated water (2H2O) labeling leads to deuterium (2H) incorporation into biomolecules of proliferating cells and provides the basis for its use in cell kinetics research. We hypothesized that rapidly proliferating cancer cells would become preferentially labeled with 2H and, therefore, could be visualized by deuterium magnetic resonance imaging (dMRI) following a brief period of in vivo systemic 2H2O administration. We initiated systemic 2H2O administration in two xenograft mouse models harboring either human colorectal, HT-29, or pancreatic, MiaPaCa-2, tumors and 2H2O level of ~ 8% in total body water (TBW). Three schemas of 2H2O administration were tested: (1) starting at tumor seeding and continuing for 7 days of in vivo growth with imaging on day 7, (2) starting at tumor seeding and continuing for 14 days of in vivo growth with imaging on day 14, and (3) initiation of labeling following a week of in vivo tumor growth and continuing until imaging was performed on day 14. Deuterium chemical shift imaging of the tumor bearing limb and contralateral control was performed on either day 7 of 14 after tumor seeding, as described. After 14 days of in vivo tumor growth and 7 days of systemic labeling with 2H2O, a clear deuterium contrast was demonstrated between the xenografts and normal tissue. Labeling in the second week after tumor implantation afforded the highest contrast between neoplastic and healthy tissue in both models. Systemic labeling with 2H2O can be used to create imaging contrast between tumor and healthy issue, providing a non-radioactive method for in vivo cancer imaging.


Asunto(s)
Imagen por Resonancia Magnética , Siembra Neoplásica , Humanos , Animales , Ratones , Xenoinjertos , Deuterio , Trasplante Heterólogo , Administración Cutánea , Modelos Animales de Enfermedad
3.
Cell Rep ; 42(10): 113180, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37794597

RESUMEN

Cognate interaction between CD4+ effector memory T (TEM) cells and dendritic cells (DCs) induces innate inflammatory cytokine production, resulting in detrimental autoimmune pathology and cytokine storms. While TEM cells use tumor necrosis factor (TNF) superfamily ligands to activate DCs, whether TEM cells prompt other DC-intrinsic changes that influence the innate inflammatory response has never been investigated. We report the surprising discovery that TEM cells trigger double-strand DNA breaks via mitochondrial reactive oxygen species (ROS) production in interacting DCs. Initiation of the DNA damage response in DCs induces activation of a cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS)-independent, non-canonical stimulator of interferon genes (STING)-TNF receptor-associated factor 6 (TRAF6)-nuclear factor κB (NF-κB) signaling axis. Consequently, STING-deficient DCs display reduced NF-κB activation and subsequent defects in transcriptional induction and functional production of interleukin-1ß (IL-1ß) and IL-6 following their interaction with TEM cells. The discovery of TEM cell-induced innate inflammation through DNA damage and a non-canonical STING-NF-κB pathway presents this pathway as a potential target to alleviate T cell-driven inflammation in autoimmunity and cytokine storms.


Asunto(s)
Células Dendríticas , Inflamación , Células T de Memoria , Humanos , Síndrome de Liberación de Citoquinas , Células Dendríticas/metabolismo , Daño del ADN , Inflamación/patología , Células T de Memoria/metabolismo , FN-kappa B/metabolismo , Nucleotidiltransferasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA