Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(4): e1008721, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32339198

RESUMEN

Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.


Asunto(s)
Glaucoma de Ángulo Abierto/genética , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Adolescente , Adulto , Anciano , División Celular , Núcleo Celular/metabolismo , Ojo/metabolismo , Femenino , Glaucoma de Ángulo Abierto/patología , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Cinetocoros/metabolismo , Masculino , Persona de Mediana Edad , Linaje , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas
2.
Ophthalmology ; 129(6): 626-636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35031440

RESUMEN

PURPOSE: To identify genetic variants associated with pigment dispersion syndrome (PDS) and pigmentary glaucoma (PG) in unrelated patients and to further understand the genetic and potentially causal relationships between PDS and associated risk factors. DESIGN: A 2-stage genome-wide association meta-analysis with replication and subsequent in silico analyses including Mendelian randomization. PARTICIPANTS: A total of 574 cases with PG or PDS and 52 627 controls of European descent. METHODS: Genome-wide association analyses were performed in 4 cohorts and meta-analyzed in 3 stages: (1) a discovery meta-analysis was performed in 3 cohorts, (2) replication was performed in the fourth cohort, and (3) all 4 cohorts were meta-analyzed to increase statistical power. Two-sample Mendelian randomization was used to determine whether refractive error and intraocular pressure exert causal effects over PDS. MAIN OUTCOME MEASURES: The association of genetic variants with PDS and whether myopia exerts causal effects over PDS. RESULTS: Significant association was present at 2 novel loci for PDS/PG. These loci and follow-up analyses implicate the genes gamma secretase activator protein (GSAP) (lead single nucleotide polymorphism [SNP]: rs9641220, P = 6.0×10-10) and glutamate metabotropic receptor 5 (GRM5)/TYR (lead SNP: rs661177, P = 3.9×10-9) as important factors in disease risk. Mendelian randomization showed significant evidence that negative refractive error (myopia) exerts a direct causal effect over PDS (P = 8.86×10-7). CONCLUSIONS: Common SNPs relating to the GSAP and GRM5/TYR genes are associated risk factors for the development of PDS and PG. Although myopia is a known risk factor, this study uses genetic data to demonstrate that myopia is, in part, a cause of PDS and PG.


Asunto(s)
Glaucoma de Ángulo Abierto , Miopía , Estudio de Asociación del Genoma Completo , Glaucoma de Ángulo Abierto/genética , Humanos , Presión Intraocular , Miopía/genética , Polimorfismo de Nucleótido Simple
3.
Hum Mol Genet ; 23(21): 5827-37, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24899048

RESUMEN

Neurodegenerative diseases affecting the macula constitute a major cause of incurable vision loss and exhibit considerable clinical and genetic heterogeneity, from early-onset monogenic disease to multifactorial late-onset age-related macular degeneration (AMD). As part of our continued efforts to define genetic causes of macular degeneration, we performed whole exome sequencing in four individuals of a two-generation family with autosomal dominant maculopathy and identified a rare variant p.Glu1144Lys in Fibrillin 2 (FBN2), a glycoprotein of the elastin-rich extracellular matrix (ECM). Sanger sequencing validated the segregation of this variant in the complete pedigree, including two additional affected and one unaffected individual. Sequencing of 192 maculopathy patients revealed additional rare variants, predicted to disrupt FBN2 function. We then undertook additional studies to explore the relationship of FBN2 to macular disease. We show that FBN2 localizes to Bruch's membrane and its expression appears to be reduced in aging and AMD eyes, prompting us to examine its relationship with AMD. We detect suggestive association of a common FBN2 non-synonymous variant, rs154001 (p.Val965Ile) with AMD in 10 337 cases and 11 174 controls (OR = 1.10; P-value = 3.79 × 10(-5)). Thus, it appears that rare and common variants in a single gene--FBN2--can contribute to Mendelian and complex forms of macular degeneration. Our studies provide genetic evidence for a key role of elastin microfibers and Bruch's membrane in maintaining blood-retina homeostasis and establish the importance of studying orphan diseases for understanding more common clinical phenotypes.


Asunto(s)
Estudios de Asociación Genética , Variación Genética , Degeneración Macular/genética , Proteínas de Microfilamentos/genética , Adulto , Anciano , Secuencia de Aminoácidos , Lámina Basal de la Coroides/metabolismo , Análisis Mutacional de ADN , Exoma , Matriz Extracelular/metabolismo , Fibrilina-2 , Fibrilinas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Degeneración Macular/diagnóstico , Masculino , Metaanálisis como Asunto , Proteínas de Microfilamentos/metabolismo , Persona de Mediana Edad , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Linaje , Conformación Proteica , Estabilidad Proteica , Retina/metabolismo , Retina/patología , Alineación de Secuencia
4.
Am J Hum Genet ; 93(2): 321-9, 2013 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-23849777

RESUMEN

Retinitis pigmentosa (RP) is a genetically heterogeneous retinal degeneration characterized by photoreceptor death, which results in visual failure. Here, we used a combination of homozygosity mapping and exome sequencing to identify mutations in ARL2BP, which encodes an effector protein of the small GTPases ARL2 and ARL3, as causative for autosomal-recessive RP (RP66). In a family affected by RP and situs inversus, a homozygous, splice-acceptor mutation, c.101-1G>C, which alters pre-mRNA splicing of ARLBP2 in blood RNA, was identified. In another family, a homozygous c.134T>G (p.Met45Arg) mutation was identified. In the mouse retina, ARL2BP localized to the basal body and cilium-associated centriole of photoreceptors and the periciliary extension of the inner segment. Depletion of ARL2BP caused cilia shortening. Moreover, depletion of ARL2, but not ARL3, caused displacement of ARL2BP from the basal body, suggesting that ARL2 is vital for recruiting or anchoring ARL2BP at the base of the cilium. This hypothesis is supported by the finding that the p.Met45Arg amino acid substitution reduced binding to ARL2 and caused the loss of ARL2BP localization at the basal body in ciliated nasal epithelial cells. These data demonstrate a role for ARL2BP and ARL2 in primary cilia function and that this role is essential for normal photoreceptor maintenance and function.


Asunto(s)
Factores de Ribosilacion-ADP/genética , Proteínas Portadoras/genética , Proteínas de Unión al GTP/genética , Mutación , Células Fotorreceptoras/metabolismo , Retinitis Pigmentosa/genética , Factores de Ribosilacion-ADP/metabolismo , Adulto , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Proteínas de Unión al GTP/metabolismo , Genes Recesivos , Homocigoto , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones , Datos de Secuencia Molecular , Linaje , Células Fotorreceptoras/patología , Unión Proteica , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Factores de Transcripción
5.
Hum Mutat ; 35(3): 289-93, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375934

RESUMEN

Inherited retinal dystrophies are a major cause of childhood blindness. Here, we describe the identification of a homozygous frameshift mutation (c.1194_1195delAG, p.Arg398Serfs*9) in TUB in a child from a consanguineous UK Caucasian family investigated using autozygosity mapping and whole-exome sequencing. The proband presented with obesity, night blindness, decreased visual acuity, and electrophysiological features of a rod cone dystrophy. The mutation was also found in two of the proband's siblings with retinal dystrophy and resulted in mislocalization of the truncated protein. In contrast to known forms of retinal dystrophy, including those caused by mutations in the tubby-like protein TULP-1, loss of function of TUB in the proband and two affected family members was associated with early-onset obesity, consistent with an additional role for TUB in energy homeostasis.


Asunto(s)
Mutación del Sistema de Lectura , Homocigoto , Obesidad/genética , Proteínas/genética , Retinitis Pigmentosa/genética , Proteínas Adaptadoras Transductoras de Señales , Niño , Mapeo Cromosómico , Consanguinidad , Proteínas del Ojo/genética , Femenino , Genes Recesivos , Homeostasis , Humanos , Masculino , Linaje , Reino Unido , Población Blanca/genética
6.
Hum Mol Genet ; 21(18): 4126-37, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22723017

RESUMEN

PRPF31, a gene located at chromosome 19q13.4, encodes the ubiquitous splicing factor PRPF31. The gene lies in a head-to-head arrangement with TFPT, a poorly characterized gene with a role in cellular apoptosis. Mutations in PRPF31 have been implicated in autosomal dominant retinitis pigmentosa (adRP), a frequent and important cause of blindness worldwide. Disease associated with PRPF31 mutations is unusual, in that there is often non-penetrance of the disease phenotype in affected families, caused by differential expression of PRPF31. This study aimed to characterize the basic promoter elements of PRPF31 and TFPT. Luciferase reporter constructs were made, using genomic DNA from an asymptomatic individual with a heterozygous deletion of the entire putative promoter region. Fragments were tested by the dual-luciferase reporter assay in HeLa and RPE-1 cell lines. A comparison was made between the promoter regions of symptomatic and asymptomatic mutation-carrying individuals. A patient (CAN493) with adRP was identified, harbouring a regulatory region mutation; both alleles were assayed by the dual-luciferase reporter assay. Luciferase assays led to the identification of core promoters for both PRPF31 and TFPT; despite their shared gene architecture, the two genes appear to be controlled by slightly different regulatory regions. One functional polymorphism was identified in the PRPF31 promoter that increased transcriptional activation. The change was not, however, consistent with the observed symptomatic-asymptomatic phenotypes in a family affected by PRPF31-adRP. Analysis of the mutant promoter fragment from CAN493 showed a >50% reduction in promoter activity, suggesting a disease mechanism of functional haploinsufficiency-the first report of this disease mechanism in adRP.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Ojo/genética , Regulación de la Expresión Génica , Retinitis Pigmentosa/genética , Transcripción Genética , Anciano , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estudios de Casos y Controles , Clonación Molecular , Secuencia Conservada , Análisis Mutacional de ADN , Proteínas del Ojo/metabolismo , Femenino , Genes Dominantes , Genes Reporteros , Estudios de Asociación Genética , Células HeLa , Humanos , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , Masculino , Datos de Secuencia Molecular , Filogenia , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología , Eliminación de Secuencia , Estadísticas no Paramétricas
7.
Hum Mutat ; 34(3): 506-14, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23281133

RESUMEN

In one consanguineous family with retinitis pigmentosa (RP), a condition characterized by progressive visual loss due to retinal degeneration, homozygosity mapping, and candidate gene sequencing suggested a novel locus. Exome sequencing identified a homozygous frameshifting mutation, c.601delG, p.Lys203Argfs*28, in RP1L1 encoding RP 1-like1, a photoreceptor-specific protein. A screen of a further 285 unrelated individuals with autosomal recessive RP identified an additional proband, homozygous for a missense variant, c.1637G>C, p.Ser546Thr, in RP1L1. A distinct retinal disorder, occult macular dystrophy (OCMD) solely affects the central retinal cone photoreceptors and has previously been reported to be associated with variants in the same gene. The association between mutations in RP1L1 and the disorder OCMD was explored by screening a cohort of 28 unrelated individuals with the condition; 10 were found to harbor rare (minor allele frequency ≤0.5% in the 1,000 genomes dataset) heterozygous RP1L1 missense variants. Analysis of family members revealed many unaffected relatives harboring the same variant. Linkage analysis excluded the possibility of a recessive mode of inheritance, and sequencing of RP1, a photoreceptor protein that interacts with RP1L1, excluded a digenic mechanism involving this gene. These findings imply an important and diverse role for RP1L1 in human retinal physiology and disease.


Asunto(s)
Proteínas del Ojo/genética , Degeneración Macular/genética , Retina/patología , Retinitis Pigmentosa/genética , Adulto , Anciano , Mapeo Cromosómico , Clonación Molecular , Estudios de Cohortes , Consanguinidad , Exoma , Femenino , Genes Recesivos , Sitios Genéticos , Haplotipos , Heterocigoto , Homocigoto , Humanos , Masculino , Análisis por Micromatrices , Persona de Mediana Edad , Mutación Missense , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
8.
Am J Hum Genet ; 86(5): 805-12, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20451172

RESUMEN

Tissue-specific alternative splicing is an important mechanism for providing spatiotemporal protein diversity. Here we show that an in-frame splice mutation in BBS8, one of the genes involved in pleiotropic Bardet-Biedl syndrome (BBS), is sufficient to cause nonsyndromic retinitis pigmentosa (RP). A genome-wide scan of a consanguineous RP pedigree mapped the trait to a 5.6 Mb region; subsequent systematic sequencing of candidate transcripts identified a homozygous splice-site mutation in a previously unknown BBS8 exon. The allele segregated with the disorder, was absent from controls, was completely invariant across evolution, and was predicted to lead to the elimination of a 10 amino acid sequence from the protein. Subsequent studies showed the exon to be expressed exclusively in the retina and enriched significantly in the photoreceptor layer. Importantly, we found this exon to represent the major BBS8 mRNA species in the mammalian photoreceptor, suggesting that the encoded 10 amino acids play a pivotal role in the function of BBS8 in this organ. Understanding the role of this additional sequence might therefore inform the mechanism of retinal degeneration in patients with syndromic BBS or other related ciliopathies.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Exones , Mutación , Proteínas/genética , Retinitis Pigmentosa/genética , Alelos , Empalme Alternativo , Secuencia de Bases , Proteínas del Citoesqueleto , Homocigoto , Humanos , Linaje , Fenotipo , Empalme del ARN , ARN Mensajero/genética , Retina/metabolismo , Degeneración Retiniana/genética
9.
Proc Natl Acad Sci U S A ; 107(35): 15523-8, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20713727

RESUMEN

Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420-421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14-20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Secuencia de Bases , Northern Blotting , Cromatografía Líquida de Alta Presión , Mapeo Cromosómico , Análisis Mutacional de ADN , Humanos , Immunoblotting , Amaurosis Congénita de Leber/genética , Lípidos/análisis , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Ratones Mutantes , Microscopía Electrónica de Transmisión , Fosfatidilcolinas/análisis , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/ultraestructura , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Retinitis Pigmentosa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Cells ; 11(24)2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36552797

RESUMEN

In advanced metastatic cancers with reduced patient survival and poor prognosis, expression of vimentin, a type III intermediate filament protein is frequently observed. Vimentin appears to suppress epithelial characteristics and augments cell migration but the molecular basis for these changes is not well understood. Here, we have ectopically expressed vimentin in MCF-7 and investigated its genomic and functional implications. Vimentin changed the cell shape by decreasing major axis, major axis angle and increased cell migration, without affecting proliferation. Vimentin downregulated major keratin genes KRT8, KRT18 and KRT19. Transcriptome-coupled GO and KEGG analyses revealed that vimentin-affected genes were linked to either cell-cell/cell-ECM or cell cycle/proliferation specific pathways. Using shRNA mediated knockdown of vimentin in two cell types; MCF-7FV (ectopically expressing) and MDA-MB-231 (endogenously expressing), we identified a vimentin-specific signature consisting of 13 protein encoding genes (CDH5, AXL, PTPRM, TGFBI, CDH10, NES, E2F1, FOXM1, CDC45, FSD1, BCL2, KIF26A and WISP2) and two long non-coding RNAs, LINC00052 and C15ORF9-AS1. CDH5, an endothelial cadherin, which mediates cell-cell junctions, was the most downregulated protein encoding gene. Interestingly, downregulation of CDH5 by shRNA significantly increased cell migration confirming our RNA-Seq data. Furthermore, presence of vimentin altered the lamin expression in MCF-7. Collectively, we demonstrate, for the first time, that vimentin in breast cancer cells could change nuclear architecture by affecting lamin expression, which downregulates genes maintaining cell-cell junctions resulting in increased cell migration.


Asunto(s)
Neoplasias de la Mama , Filamentos Intermedios , Humanos , Femenino , Línea Celular Tumoral , Filamentos Intermedios/metabolismo , Vimentina/genética , Vimentina/metabolismo , Neoplasias de la Mama/genética , Movimiento Celular/genética , ARN Interferente Pequeño , Perfilación de la Expresión Génica , Laminas/genética , Proteínas del Tejido Nervioso/genética
11.
Mol Vis ; 17: 1249-53, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21633712

RESUMEN

PURPOSE: Cataracts are the most common cause of blindness worldwide. Inherited cataract is a clinically and genetically heterogeneous disease. Here we report a novel mutation in the paired-like homeodomain 3 (PITX3) gene segregating in a four generation English family with an isolated autosomal dominant posterior polar cataract. METHODS: A genome-wide linkage was performed by means of single nucleotide polymorphism (SNP) and microsatellite markers. Linkage analyses were performed with the GeneHunter and MLINK programs. Direct sequencing of PCR products was performed to detect mutation in the gene, using the BigDye version 3.1 and analyzed using Sequence analysis version 5.2. RESULTS: Genome-wide linkage analysis with SNP markers, identified a disease-haplotype interval on chromosome 10q. Two point positive logarithm of odds (LOD) scores was obtained with markers D10S205 (Z=3.10 at θ=0.00), flanked by markers D10S1709 and D10S543, which harbors the homeobox gene PITX3. Sequence analysis of PITX3 revealed a 1-bp deletion that cosegregated with all the affected members of this family which resulted in a frameshift in codon 181 and likely to produce an aberrant protein consisting of 127 additional residues. CONCLUSIONS: The 542delC is a novel mutation in PITX3 causing an isolated posterior polar cataract.


Asunto(s)
Catarata/congénito , Catarata/genética , Eliminación de Gen , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Cromosomas Humanos Par 10/genética , Citosina , Exones , Genes Dominantes , Ligamiento Genético , Marcadores Genéticos , Haplotipos , Humanos , Escala de Lod , Linaje
12.
Cancers (Basel) ; 13(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34638469

RESUMEN

Epithelial-mesenchymal transition (EMT) is a reversible plethora of molecular events where epithelial cells gain the phenotype of mesenchymal cells to invade the surrounding tissues. EMT is a physiological event during embryogenesis (type I) but also happens during fibrosis (type II) and cancer metastasis (type III). It is a multifaceted phenomenon governed by the activation of genes associated with cell migration, extracellular matrix degradation, DNA repair, and angiogenesis. The cancer cells employ EMT to acquire the ability to migrate, resist therapeutic agents and escape immunity. One of the key biomarkers of EMT is vimentin, a type III intermediate filament that is normally expressed in mesenchymal cells but is upregulated during cancer metastasis. This review highlights the pivotal role of vimentin in the key events during EMT and explains its role as a downstream as well as an upstream regulator in this highly complex process. This review also highlights the areas that require further research in exploring the role of vimentin in EMT. As a cytoskeletal protein, vimentin filaments support mechanical integrity of the migratory machinery, generation of directional force, focal adhesion modulation and extracellular attachment. As a viscoelastic scaffold, it gives stress-bearing ability and flexible support to the cell and its organelles. However, during EMT it modulates genes for EMT inducers such as Snail, Slug, Twist and ZEB1/2, as well as the key epigenetic factors. In addition, it suppresses cellular differentiation and upregulates their pluripotent potential by inducing genes associated with self-renewability, thus increasing the stemness of cancer stem cells, facilitating the tumour spread and making them more resistant to treatments. Several missense and frameshift mutations reported in vimentin in human cancers may also contribute towards the metastatic spread. Therefore, we propose that vimentin should be a therapeutic target using molecular technologies that will curb cancer growth and spread with reduced mortality and morbidity.

13.
BMC Med Genet ; 11: 145, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20939871

RESUMEN

BACKGROUND: Rod-cone dystrophies are heterogeneous group of inherited retinal disorders both clinically and genetically characterized by photoreceptor degeneration. The mode of inheritance can be autosomal dominant, autosomal recessive or X-linked. The purpose of this study was to identify mutations in one of the genes, PRPF31, in French patients with autosomal dominant RP, to perform genotype-phenotype correlations of those patients, to determine the prevalence of PRPF31 mutations in this cohort and to review previously identified PRPF31 mutations from other cohorts. METHODS: Detailed phenotypic characterization was performed including precise family history, best corrected visual acuity using the ETDRS chart, slit lamp examination, kinetic and static perimetry, full field and multifocal ERG, fundus autofluorescence imaging and optic coherence tomography. For genetic diagnosis, genomic DNA of ninety families was isolated by standard methods. The coding exons and flanking intronic regions of PRPF31 were PCR amplified, purified and sequenced in the index patient. RESULTS: We showed for the first time that 6.7% cases of a French adRP cohort have a PRPF31 mutation. We identified in total six mutations, which were all novel and not detected in ethnically matched controls. The mutation spectrum from our cohort comprises frameshift and splice site mutations. Co-segregation analysis in available family members revealed that each index patient and all affected family members showed a heterozygous mutation. In five families incomplete penetrance was observed. Most patients showed classical signs of RP with relatively preserved central vision and visual field. CONCLUSION: Our studies extended the mutation spectrum of PRPF31 and as previously reported in other populations, it is a major cause of adRP in France.


Asunto(s)
Proteínas del Ojo/genética , Mutación , Retinitis Pigmentosa/genética , Estudios de Casos y Controles , Familia , Mutación del Sistema de Lectura , Francia/epidemiología , Genes Dominantes , Heterocigoto , Humanos , Penetrancia , Prevalencia , Sitios de Empalme de ARN/genética , Retinitis Pigmentosa/etiología
14.
Ophthalmic Genet ; 39(4): 539-543, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29947570

RESUMEN

OBJECTIVE: This study was undertaken with the objective to investigate the potential involvement of VAX2 in retinal degeneration. METHODS: A cohort of macular and cone dystrophy patients (n = 70) was screened for variant identification. Polymerase chain reaction (PCR) products were purified using ExoSAP-IT. Direct sequencing of PCR products was performed using BigDye 3.1 on the ABI 3730 DNA Analyzer and analyzed using DNASTAR software tool. Search for known variant was performed using the following platforms: 1000 Genomes Project, Ensembl, UCSC, ExAc, and dbSNP. The VAX2 mutants were generated using the GeneArt® Site-Directed Mutagenesis kit. In vitro analysis was performed in hTERTRPE-1 (RPE-1) cell line. Cells were photographed using a Zeiss AXIOVERT S100 microscope. Images were analyzed using Photoshop CS4 software. RESULTS: Here, we report the identification of a heterozygous non-synonymous variant (c.416T>G; p.Leu139Arg) in one cone dystrophy proband. Functional characterization of this variant in vitro revealed an aberrant phenotype seen as protein mislocalization to cytoplasm/nucleus and aggregates undergoing degradation or forming aggresomes. The cellular phenotype suggests protein loss-of-function. Analysis of the VAX2 p.Leu139Met, a variant present in the normal population, showed a phenotype similar to the wild-type, further supporting the hypothesis for the Leucine 139 to Arginine change to be damaging. CONCLUSIONS: This study raises the interesting possibility for evaluating VAX2 as a candidate gene for cone dystrophy.


Asunto(s)
Distrofia del Cono/genética , Proteínas de Homeodominio/genética , Mutación , Distrofia del Cono/diagnóstico , Distrofia del Cono/fisiopatología , Análisis Mutacional de ADN , Electrorretinografía , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Linaje , Fenotipo , Plásmidos , Reacción en Cadena de la Polimerasa , Agudeza Visual
15.
Invest Ophthalmol Vis Sci ; 48(3): 1330-4, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17325180

RESUMEN

PURPOSE: Retinitis pigmentosa is a clinically and genetically heterogeneous disorder. It is characterized by progressive degeneration of the peripheral retina, leading to night blindness and loss of the peripheral visual field. PRPF31 is one of four pre-mRNA splicing factors identified as causing autosomal dominant retinitis pigmentosa, with incomplete penetrance being the unique feature associated with mutations in this gene. The purpose of this study was to identify PRPF31 mutations in a cohort of 118 cases of autosomal dominant retinitis pigmentosa and determine the genotype-phenotype correlation emerging from the spectrum of mutations in this gene. METHODS: Probands with autosomal dominant retinitis pigmentosa underwent ophthalmic evaluation. Blood samples were obtained, genomic DNA was isolated, and PRPF31 exons along with adjacent splice junctions were amplified by PCR and screened by direct sequencing. RESULTS: In the 118 individuals with autosomal dominant retinitis pigmentosa, six mutations were identified, of which four were novel. One previously known splice site mutation was identified in two other apparently unrelated families. CONCLUSIONS: Mutations in PRPF31 causing adRP were present in nearly 5% of a mixed U.K. population. The age of onset and the severity of the disease varied with different mutations. In addition, individuals carrying the same mutation showed a range of phenotypic variation, suggesting the involvement of other modifying genes.


Asunto(s)
Proteínas del Ojo/genética , Mutación , Empalme del ARN/genética , Retinitis Pigmentosa/genética , Adolescente , Adulto , Edad de Inicio , Anciano , Análisis Mutacional de ADN , Femenino , Genes Dominantes , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Prevalencia , Retinitis Pigmentosa/epidemiología , Reino Unido/epidemiología
16.
BMC Med Genomics ; 9: 15, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001270

RESUMEN

BACKGROUND: Glaucoma is the largest cause of irreversible blindness affecting more than 60 million people globally. The disease is defined as a gradual loss of peripheral vision due to death of Retinal Ganglion Cells (RGC). The RGC death is largely influenced by the rate of aqueous humor production by ciliary processes and its passage through the trabecular meshwork (TM) in the anterior part of the eye. Primary open angle glaucoma (POAG), the most common subtype, is a genetically complex disease. Multiple genes and many loci have been reported to be involved in POAG but taken together they explain less than 10 % of the patients from a genetic perspective warranting more studies in different world populations. The purpose of this study was to perform genome-wide search for common variants associated with POAG in an east-Indian population. METHODS: The study recruited 746 POAG cases and 697 controls distributed into discovery and validation cohorts. In the discovery phase, genome-wide genotype data was generated on Illumina Infinium 660 W-Quad platform and the significant SNPs were genotyped using Illumina GGGT assay in the second phase. Logistic regression was used to test association in the discovery phase to adjust for population sub-structure and chi-square test was used for association analysis in validation phase. Publicly available expression dataset for trabecular meshwork was used to check for expression of the candidate gene under cyclic mechanical stress. Western blot and immunofluorescence experiments were performed in human TM cells and murine eye, respectively to check for expression of the candidate gene. RESULTS: Meta-analysis of discovery and validation phase data revealed the association of rs7916852 in MPP7 gene (p = 5.7x10(-7)) with POAG. We have shown abundant expression of MPP7 in the HTM cells. Expression analysis shows that upon cyclic mechanical stress MPP7 was significantly down-regulated in HTM (Fold change: 2.6; p = 0.018). MPP7 protein expression was also found to be enriched in the ciliary processes of the murine eye. CONCLUSION: Using a genome-wide approach we have identified MPP7 as a novel candidate gene for POAG with evidence of its expression in relevant ocular tissues and dysregulation under mechanical stress possibly mimicking the disease scenario.


Asunto(s)
Regulación hacia Abajo/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Glaucoma de Ángulo Abierto/genética , Proteínas de la Membrana/genética , Estrés Mecánico , Malla Trabecular/metabolismo , Animales , Cuerpo Ciliar/metabolismo , Estudios de Cohortes , Técnica del Anticuerpo Fluorescente , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , India , Ratones Endogámicos C57BL , Polimorfismo de Nucleótido Simple/genética , Reproducibilidad de los Resultados , Malla Trabecular/patología
17.
Nat Genet ; 44(9): 1040-5, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22842227

RESUMEN

Leber congenital amaurosis (LCA) is an infantile-onset form of inherited retinal degeneration characterized by severe vision loss(1,2). Two-thirds of LCA cases are caused by mutations in 17 known disease-associated genes(3) (Retinal Information Network (RetNet)). Using exome sequencing we identified a homozygous missense mutation (c.25G>A, p.Val9Met) in NMNAT1 that is likely to be disease causing in two siblings of a consanguineous Pakistani kindred affected by LCA. This mutation segregated with disease in the kindred, including in three other children with LCA. NMNAT1 resides in the previously identified LCA9 locus and encodes the nuclear isoform of nicotinamide mononucleotide adenylyltransferase, a rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD(+)) biosynthesis(4,5). Functional studies showed that the p.Val9Met alteration decreased NMNAT1 enzyme activity. Sequencing NMNAT1 in 284 unrelated families with LCA identified 14 rare mutations in 13 additional affected individuals. These results are the first to link an NMNAT isoform to disease in humans and indicate that NMNAT1 mutations cause LCA.


Asunto(s)
Amaurosis Congénita de Leber/genética , Mutación , Nicotinamida-Nucleótido Adenililtransferasa/genética , Secuencia de Bases , Estudios de Casos y Controles , Niño , Preescolar , Análisis Mutacional de ADN , Familia , Femenino , Predisposición Genética a la Enfermedad , Humanos , Amaurosis Congénita de Leber/complicaciones , Masculino , Mutación/fisiología , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Linaje , Degeneración Retiniana/complicaciones , Degeneración Retiniana/diagnóstico , Degeneración Retiniana/genética
18.
Invest Ophthalmol Vis Sci ; 52(9): 6597-603, 2011 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-21715351

RESUMEN

PURPOSE. This study sets out to identify novel mutations in PRPF31 in a cohort of autosomal dominant retinitis pigmentosa (adRP) patients with a history of nonpenetrance in the family. METHODS. Twenty-one patients with history of nonpenetrant autosomal dominant retinitis pigmentosa were selected; all underwent full ophthalmic examination. Multiplex ligation-dependent probe analysis (MLPA) was performed and, where a deletion was found, further family members were recruited. An individual suspected to harbor a large deletion was used as a positive control. Analysis of single nucleotide polymorphisms in the upstream region was used to determine the extent of the deletion, and the breakpoint was then characterized by PCR and sequencing. RESULTS. In one family, multiplex ligation-dependent probe analysis revealed a novel large deletion in 19q13.4 encompassing exons 1 to 13 of the PRPF31 gene. The mutation was characterized as a deletion of 112 kilobase (kb), encompassing over 90% of PRPF31 and five upstream genes: TFPT, OSCAR, NDUFA3, TARM-1, and VSTM-1. The breakpoint in the positive control family was also characterized. The mechanism of deletion in both families was Alu-mediated nonallelic homologous recombination. CONCLUSIONS. This study describes two large deletions, one in a previously reported family and one in a new family: the latter represents the largest deletion yet described on chromosome 19 and the first report of the involvement of VSTM-1. Remarkably, heterozygous deletion of this large region (encompassing six genes) produces little or no other clinical disease besides retinitis pigmentosa.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 19/genética , Proteínas del Ojo/genética , Receptores Inmunológicos/genética , Retinitis Pigmentosa/genética , Adulto , Anciano , Secuencia de Bases , Puntos de Rotura del Cromosoma , Exones/genética , Femenino , Genes Dominantes , Humanos , Datos de Secuencia Molecular , Mutación , Técnicas de Amplificación de Ácido Nucleico , Linaje , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
19.
Invest Ophthalmol Vis Sci ; 52(13): 9304-9, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22039234

RESUMEN

PURPOSE: The aim of this study was to report detailed genotype/phenotype correlation in two British autosomal dominant retinitis pigmentosa (adRP) families with recently described mutations in PRPF8. METHODS: Ten affected members from the two families (excluded for PRPF31 mutations) were assessed clinically. Seven subjects had fundus photography; some had electrophysiology, autofluorescence imaging, and visual field testing. Linkage analysis was performed from genomic DNA in one family. RNA was extracted from lymphocytes of the proband from both families, reverse transcribed into cDNA and subsequently screened for mutations in PRPF8. Segregation of mutations in each family was tested by direct genomic sequencing of the specific exons carrying the mutation. RESULTS: All affected members complained of nyctalopia with variable age of onset. In the first family, there was marked variation in the clinical phenotype among affected individuals ranging from severe rod-cone dystrophy to a 67-year-old patient with a normal retinal appearance and mild rod dysfunction on scotopic electroretinography (ERG). The second family demonstrated similar variability and a history of a nonpenetrant individual. Linkage analysis in the first family showed strong evidence for linkage to markers on chromosome 17p implicating PRPF8 as a candidate gene. A c.6353 C>T change causing a nonconservative missense mutation p.S2118F was found in exon 38 of PRPF8 by direct sequencing of the cDNA. The mutation c.6930G>C (p.R2310S) was found in the second family. CONCLUSIONS: This is the first report of marked intrafamilial variability associated with mutations in the PRPF8 gene, including incomplete penetrance. PRPF8 mutations should be suspected in patients with adRP and variable expressivity.


Asunto(s)
Proteínas Portadoras/genética , Mutación Missense , Retinitis Pigmentosa/genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 17/genética , Análisis Mutacional de ADN , Electrorretinografía , Exones/genética , Femenino , Angiografía con Fluoresceína , Genes Dominantes , Ligamiento Genético , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Ceguera Nocturna/genética , Linaje , Fenotipo , Células Fotorreceptoras de Vertebrados/fisiología , Reacción en Cadena de la Polimerasa , Proteínas de Unión al ARN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/fisiopatología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología , Pruebas del Campo Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA