Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Cell ; 134(1): 62-73, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614011

RESUMEN

The p53 tumor suppressor is a key mediator of cellular responses to various stresses. Here, we show that under conditions of basal physiologic and cell-culture stress, p53 inhibits expression of the CD44 cell-surface molecule via binding to a noncanonical p53-binding sequence in the CD44 promoter. This interaction enables an untransformed cell to respond to stress-induced, p53-dependent cytostatic and apoptotic signals that would otherwise be blocked by the actions of CD44. In the absence of p53 function, the resulting derepressed CD44 expression is essential for the growth and tumor-initiating ability of highly tumorigenic mammary epithelial cells. In both tumorigenic and nontumorigenic cells, CD44's expression is positively regulated by p63, a paralogue of p53. Our data indicate that CD44 is a key tumor-promoting agent in transformed tumor cells lacking p53 function. They also suggest that the derepression of CD44 resulting from inactivation of p53 can potentially aid the survival of immortalized, premalignant cells.


Asunto(s)
Receptores de Hialuranos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Proteína p53 Supresora de Tumor/genética
2.
Angiogenesis ; 21(4): 837-848, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29956017

RESUMEN

Children with hypoplastic lung diseases, such as congenital diaphragmatic hernia, can require life support via extracorporeal membrane oxygenation and systemic anticoagulation, usually in the form of heparin. The role of heparin in angiogenesis and organ growth is inconclusive, with conflicting data reported in the literature. This study aimed to investigate the effects of heparin on lung growth in a model of compensatory lung growth (CLG). Compared to the absence of heparin, treatment with heparin decreased the vascular endothelial growth factor (VEGF)-mediated activation of VEGFR2 and mitogenic effect on human lung microvascular endothelial cells in vitro. Compared to non-heparinized controls, heparinized mice demonstrated impaired pulmonary mechanics, decreased respiratory volumes and flows, and reduced activity levels after left pneumonectomy. They also had lower lung volume, pulmonary septal surface area and alveolar density on morphometric analyses. Lungs of heparinized mice displayed decreased phosphorylation of VEGFR2 compared to the control group, with consequential downstream reduction in markers of cellular proliferation and survival. The use of bivalirudin, an alternative anticoagulant that does not interact with VEGF, preserved lung growth and pulmonary mechanics. These results demonstrated that heparin impairs CLG by reducing VEGFR2 activation. These findings raise concern for the clinical use of heparin in the setting of organ growth or regeneration.


Asunto(s)
Heparina/farmacología , Pulmón/crecimiento & desarrollo , Neumonectomía , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Hirudinas/farmacología , Humanos , Pulmón/patología , Masculino , Ratones , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes/farmacología
3.
Blood ; 127(7): 921-6, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26647394

RESUMEN

In times of physiological stress, platelet count can transiently rise. What initiates this reactive thrombocytosis is poorly understood. Intriguingly, we found that treating megakaryocytes (MKs) with the releasate from activated platelets increased proplatelet production by 47%. Platelets store inflammatory cytokines, including the chemokine ligand 5 (CCL5, RANTES); after TRAP activation, platelets release over 25 ng/mL CCL5. We hypothesized that CCL5 could regulate platelet production by binding to its receptor, CCR5, on MKs. Maraviroc (CCR5 antagonist) or CCL5 immunodepletion diminished 95% and 70% of the effect of platelet releasate, respectively, suggesting CCL5 derived from platelets is sufficient to drive increased platelet production through MK CCR5. MKs cultured with recombinant CCL5 increased proplatelet production by 50% and had significantly higher ploidy. Pretreating the MK cultures with maraviroc prior to exposure to CCL5 reversed the augmented proplatelet formation and ploidy, suggesting that CCL5 increases MK ploidy and proplatelet formation in a CCR5-dependent manner. Interrogation of the Akt signaling pathway suggested that CCL5/CCR5 may influence proplatelet production by suppressing apoptosis. In an in vivo murine acute colitis model, platelet count significantly correlated with inflammation whereas maraviroc treatment abolished this correlation. We propose that CCL5 signaling through CCR5 may increase platelet counts during physiological stress.


Asunto(s)
Plaquetas/metabolismo , Quimiocina CCL5/metabolismo , Megacariocitos/patología , Transducción de Señal/fisiología , Animales , Plaquetas/citología , Quimiocina CCL5/genética , Ciclohexanos/farmacología , Humanos , Maraviroc , Megacariocitos/citología , Ratones , Receptores CCR5/genética , Receptores CCR5/metabolismo , Transducción de Señal/efectos de los fármacos , Triazoles/farmacología
4.
Proc Natl Acad Sci U S A ; 111(4): 1521-6, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24434559

RESUMEN

The biochemical mechanisms that regulate the process of cancer metastasis are still poorly understood. Because kinases, and the signaling pathways they comprise, play key roles in regulation of many cellular processes, we used an unbiased RNAi in vitro screen and a focused cDNA in vivo screen against human kinases to identify those with previously undocumented roles in metastasis. We discovered that G-protein-coupled receptor kinase 3 (GRK3; or ß-adrenergic receptor kinase 2) was not only necessary for survival and proliferation of metastatic cells, but also sufficient to promote primary prostate tumor growth and metastasis upon exogenous expression in poorly metastatic cells in mouse xenograft models. Mechanistically, we found that GRK3 stimulated angiogenesis, at least in part through down-regulation of thrombospondin-1 and plasminogen activator inhibitor type 2. Furthermore, GRK3 was found to be overexpressed in human prostate cancers, especially in metastatic tumors. Taken together, these data suggest that GRK3 plays an important role in prostate cancer progression and metastasis.


Asunto(s)
Quinasa 3 del Receptor Acoplado a Proteína-G/fisiología , Metástasis de la Neoplasia , Neoplasias de la Próstata/patología , Proliferación Celular , Progresión de la Enfermedad , Humanos , Masculino , Inhibidor 2 de Activador Plasminogénico/genética , Neoplasias de la Próstata/metabolismo , Trombospondina 1/genética
5.
FASEB J ; 29(2): 662-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25406462

RESUMEN

The incidence of certain angiogenesis-dependent diseases is higher in Caucasians than in African Americans. Angiogenesis is amplified in wound healing and cornea models in albino C57 mice compared with black C57 mice. Moreover, mouse and human melanocytes with low pigmentation stimulate endothelial cell (EC) proliferation and migration in vitro more than melanocytes with high pigmentation. This effect is due, in part, to the secretion of an angiogenic protein called fibromodulin (FMOD) from lowly pigmented melanocytes. Herein, we expand upon the mechanism contributing to increased angiogenesis in lighter skin and report that monocyte chemotactic protein-1 (MCP-1) is secreted by nonpigmented mouse melanocytes by 5- to 10-fold more than pigmented melanocytes. MCP-1 protein stimulates EC proliferation and migration in vitro and angiogenesis in vivo. Mechanistic studies determine that FMOD is upstream of MCP-1 and promotes its secretion from both melanocytes and activated ECs via stimulation of NF-κB activity. Mice injected with FMOD-neutralizing antibodies show 2.3-fold decreased levels of circulating MCP-1. Human studies confirmed that, on average, Caucasians have 2-fold higher serum levels of MCP-1 than African Americans. Taken together, this study implicates the FMOD/MCP-1 pathway in the regulation of angiogenesis by local melanocytes and suggests that melanogenic activity may protect against aberrant angiogenic diseases.


Asunto(s)
Quimiocina CCL2/metabolismo , Melanocitos/citología , Neovascularización Patológica , Pigmentación de la Piel , Negro o Afroamericano , Inductores de la Angiogénesis/metabolismo , Animales , Células Cultivadas , Células Endoteliales/citología , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/metabolismo , Fibromodulina , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microcirculación , FN-kappa B/metabolismo , Pigmentación , Proteoglicanos/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(22): 8699-704, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22589302

RESUMEN

The mechanisms underlying tumor dormancy have been elusive and not well characterized. We recently published an experimental model for the study of human tumor dormancy and the role of angiogenesis, and reported that the angiogenic switch was preceded by a local increase in VEGF-A and basic fibroblast growth factor. In this breast cancer xenograft model (MDA-MB-436 cells), analysis of differentially expressed genes revealed that heat shock protein 27 (HSP27) was significantly up-regulated in angiogenic cells compared with nonangiogenic cells. The effect of HSP27 down-regulation was further evaluated in cell lines, mouse models, and clinical datasets of human patients with breast cancer and melanoma. Stable down-regulation of HSP27 in angiogenic tumor cells was followed by long-term tumor dormancy in vivo. Strikingly, only 4 of 30 HSP27 knockdown xenograft tumors initiated rapid growth after day 70, in correlation with a regain of HSP27 protein expression. Significantly, no tumors escaped from dormancy without HSP27 expression. Down-regulation of HSP27 was associated with reduced endothelial cell proliferation and decreased secretion of VEGF-A, VEGF-C, and basic fibroblast growth factor. Conversely, overexpression of HSP27 in nonangiogenic cells resulted in expansive tumor growth in vivo. By clinical validation, strong HSP27 protein expression was associated with markers of aggressive tumors and decreased survival in patients with breast cancer and melanoma. An HSP27-associated gene expression signature was related to molecular subgroups and survival in breast cancer. Our findings suggest a role for HSP27 in the balance between tumor dormancy and tumor progression, mediated by tumor-vascular interactions. Targeting HSP27 might offer a useful strategy in cancer treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Regulación hacia Abajo , Proteínas de Choque Térmico HSP27/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Animales , Western Blotting , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Células Cultivadas , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico HSP27/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones SCID , Neovascularización Patológica/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo
7.
Commun Med (Lond) ; 4(1): 10, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218979

RESUMEN

BACKGROUND: VT1021 is a cyclic peptide that induces the expression of thrombospondin-1 (TSP-1) in myeloid-derived suppressor cells (MDSCs) recruited to the tumor microenvironment (TME). TSP-1 reprograms the TME via binding to CD36 and CD47 to induce tumor and endothelial cell apoptosis as well as immune modulation in the TME. METHODS: Study VT1021-01 (ClinicalTrials.gov ID NCT03364400) used a modified 3 + 3 design. The primary objective was to determine the recommended Phase 2 dose (RP2D) in patients with advanced solid tumors. Safety, tolerability, and pharmacokinetics (PK) were assessed. Patients were dosed twice weekly intravenously in 9 cohorts (0.5-15.6 mg/kg). Safety was evaluated using CTCAE version 5.0 and the anti-tumor activity was evaluated by RECIST version 1.1. RESULTS: The RP2D of VT1021 is established at 11.8 mg/kg. VT1021 is well tolerated with no dose-limiting toxicities reported (0/38). The most frequent drug-related adverse events are fatigue (15.8%), nausea (10.5%), and infusion-related reactions (10.5%). Exposure increases proportionally from 0.5 to 8.8 mg/kg. The disease control rate (DCR) is 42.9% with 12 of 28 patients deriving clinical benefit including a partial response (PR) in one thymoma patient (504 days). CONCLUSIONS: VT1021 is safe and well-tolerated across all doses tested. RP2D has been selected for future clinical studies. PR and SD with tumor shrinkage are observed in multiple patients underscoring the single-agent potential of VT1021. Expansion studies in GBM, pancreatic cancer and other solid tumors at the RP2D have been completed and results will be communicated in a separate report.


It may be possible to treat cancers with therapies that modify the tumor microenvironment. This is the environment in the body in which tumors survive and grow and is composed of different types of cells. One such potential therapy is VT1021. Here, we conduct the first clinical trial to test this therapy in patients. We identify the optimal dose of the treatment to take into further studies, finding that VT1021 is safe and well tolerated by patients. We see some signs that the treatment is working in some patients and see evidence of modification of the tumor microenvironment. These findings help to inform further clinical trials of VT1021 to determine whether it is safe and effective in larger cohorts of patients.

8.
Commun Med (Lond) ; 4(1): 95, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773224

RESUMEN

BACKGROUND: Preclinical studies have demonstrated that VT1021, a first-in-class therapeutic agent, inhibits tumor growth via stimulation of thrombospondin-1 (TSP-1) and reprograms the tumor microenvironment. We recently reported data from the dose escalation part of a phase I study of VT1021 in solid tumors. Here, we report findings from the dose expansion phase of the same study. METHODS: We analyzed the safety and tolerability, clinical response, and biomarker profile of VT1021 in the expansion portion of the phase I study (NCT03364400). Safety/tolerability is determined by adverse events related to the treatment. Clinical response is determined by RECIST v1.1 and iRECIST. Biomarkers are measured by multiplexed ion beam imaging and enzyme-linked immunoassay (ELISA). RESULTS: First, we report the safety and tolerability data as the primary outcome of this study. Adverse events (AE) suspected to be related to the study treatment (RTEAEs) are mostly grade 1-2. There are no grade 4 or 5 adverse events. VT1021 is safe and well tolerated in patients with solid tumors in this study. We report clinical responses as a secondary efficacy outcome. VT1021 demonstrates promising single-agent clinical activity in recurrent GBM (rGBM) in this study. Among 22 patients with rGBM, the overall disease control rate (DCR) is 45% (95% confidence interval, 0.24-0.67). Finally, we report the exploratory outcomes of this study. We show the clinical confirmation of TSP-1 induction and TME remodeling by VT1021. Our biomarker analysis identifies several plasmatic cytokines as potential biomarkers for future clinical studies. CONCLUSIONS: VT1021 is safe and well-tolerated in patients with solid tumors in a phase I expansion study. VT1021 has advanced to a phase II/III clinical study in glioblastoma (NCT03970447).


The network of cells that surround a tumor, the tumor microenvironment, can help cancers to grow. Therapies targeting the tumor microenvironment may help to stop tumor growth. One such therapy is VT1021. In animal models, VT1021 treatment stops tumor cells from growing by changing the tumor microenvironment. Here, we have tested VT1021 in a clinical trial and found that VT1021 treatment is safe and well tolerated in patients with cancer. We also see signs of efficacy in some patients and observe evidence that VT1021 modifies the tumor microenvironment, which may help to block tumor growth. Finally, we identified several markers from the blood that may help to predict which patients will best benefit from VT1021 treatment. With further testing in clinical trials, VT1021 may be a useful therapy for patients with cancer.

9.
Cancer Cell ; 3(3): 219-31, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12676581

RESUMEN

Tumor angiogenesis is postulated to be regulated by the balance between pro- and anti-angiogenic factors. We demonstrate that the critical step in establishing the angiogenic capability of human cells is the repression of the critical anti-angiogenic factor, thrombospondin-1 (Tsp-1). This repression is essential for tumor formation by mammary epithelial cells and kidney cells engineered to express SV40 early region proteins, hTERT, and H-RasV12. We have uncovered the signaling pathway leading from Ras to Tsp-1 repression. Ras induces the sequential activation of PI3 kinase, Rho, and ROCK, leading to activation of Myc through phosphorylation; phosphorylation of Myc via this mechanism enables it to repress Tsp-1 expression. We thus describe a novel mechanism by which the cooperative activity of the oncogenes, ras and myc, leads directly to angiogenesis and tumor formation.


Asunto(s)
Neovascularización Patológica/fisiopatología , Trombospondina 1/metabolismo , Proteínas ras/metabolismo , Línea Celular , Línea Celular Transformada , Trasplante de Células , Factores de Crecimiento Endotelial/metabolismo , Activación Enzimática , Regulación Neoplásica de la Expresión Génica , Genes Supresores de Tumor , Genes ras , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Linfocinas/metabolismo , Modelos Biológicos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Trombospondina 1/genética , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular , Factores de Crecimiento Endotelial Vascular , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho
10.
Proc Natl Acad Sci U S A ; 106(29): 12115-20, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19581582

RESUMEN

Metastatic tumors can prepare a distant site for colonization via the secretion of factors that act in a systemic manner. We hypothesized that non- or weakly metastatic human tumor cells may act in an opposite fashion by creating a microenvironment in distant tissues that is refractory to colonization. By comparing cell lines with different metastatic potential, we have identified a tumor-secreted inhibitor of metastasis, prosaposin (Psap), which functions in a paracrine and endocrine fashion by stimulating the expression of thrombospondin-1 (Tsp-1) in fibroblasts present in both primary tumors and distant organs, doing so in a p53-dependent manner. Introduction of Psap in highly metastatic cells significantly reduced the occurrence of metastases, whereas inhibition of Psap production by tumor cells was associated with increased metastatic frequency. In human prostate cancer, decreased Psap expression was significantly associated with metastatic tumors. Our findings suggest that prosaposin, or other agents that stimulate p53 activity in the tumor stroma, may be an effective therapy by inhibition of the metastatic process.


Asunto(s)
Células Endocrinas/metabolismo , Metástasis de la Neoplasia/patología , Comunicación Paracrina , Saposinas/metabolismo , Células del Estroma/metabolismo , Trombospondina 1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular Tumoral , Fibroblastos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células del Estroma/patología
11.
Nat Commun ; 13(1): 7959, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575174

RESUMEN

The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.


Asunto(s)
Neoplasias , Trombospondina 1 , Humanos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Microambiente Tumoral/genética , Neoplasias/genética , Tripsina , Tripsinógeno
12.
APMIS ; 116(7-8): 638-47, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18834408

RESUMEN

Tumor dormancy is a critical yet poorly understood phenomenon affecting both the diagnosis and treatment of human cancers. This is due in large part to the lack of model systems available to study dormant tumor cells and the length of time needed to adequately examine the models that do exist. It has been demonstrated in several types of human cancer that tumor dormancy is a function of an impairment in angiogenesis. The intracellular signaling pathways regulating the expression of several pro- and anti-angiogenic proteins have been well characterized in human cancer cells. The intercellular signaling that takes place between tumor cells and the surrounding tumor-associated stroma has not been as extensively studied with regard to the regulation of angiogenesis, and as a result dormancy. In this review we define the key players in the regulation of angiogenesis and examine how their expression is regulated in the tumor-associated stroma. The resulting analysis is often seemingly paradoxical, underscoring the complexity of intercellular signaling within tumors and the need to better understand the environmental context underlying these signaling mechanisms.


Asunto(s)
Neoplasias/patología , Neoplasias/fisiopatología , Trombospondina 1/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Hormonas/fisiología , Humanos , Neoplasias/irrigación sanguínea , Neovascularización Patológica , Comunicación Paracrina/fisiología , Factor de Crecimiento Derivado de Plaquetas/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Factor de Crecimiento Transformador beta/fisiología
13.
PLoS One ; 13(12): e0208579, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566445

RESUMEN

Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 µg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway.


Asunto(s)
Pulmón/efectos de los fármacos , Proteínas Recombinantes de Fusión/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/antagonistas & inhibidores , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Relación Dosis-Respuesta a Droga , Semivida , Pulmón/crecimiento & desarrollo , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Neumonectomía , Proteínas Recombinantes de Fusión/biosíntesis , Pruebas de Función Respiratoria , Transducción de Señal/efectos de los fármacos , Tensoactivos/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
14.
Sci Transl Med ; 8(329): 329ra34, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26962158

RESUMEN

The vast majority of ovarian cancer-related deaths are caused by metastatic dissemination of tumor cells, resulting in subsequent organ failure. However, despite our increased understanding of the physiological processes involved in tumor metastasis, there are no clinically approved drugs that have made a major impact in increasing the overall survival of patients with advanced, metastatic ovarian cancer. We identified prosaposin (psap) as a potent inhibitor of tumor metastasis, which acts via stimulation of p53 and the antitumorigenic protein thrombospondin-1 (TSP-1) in bone marrow-derived cells that are recruited to metastatic sites. We report that more than 97% of human serous ovarian tumors tested express CD36, the receptor that mediates the proapoptotic activity of TSP-1. Accordingly, we sought to determine whether a peptide derived from psap would be effective in treating this form of ovarian cancer. To that end, we developed a cyclic peptide with drug-like properties derived from the active sequence in psap. The cyclic psap peptide promoted tumor regression in a patient-derived tumor xenograft model of metastatic ovarian cancer. Thus, we hypothesize that a therapeutic agent based on this psap peptide would have efficacy in treating patients with metastatic ovarian cancer.


Asunto(s)
Neoplasias Glandulares y Epiteliales/tratamiento farmacológico , Neoplasias Glandulares y Epiteliales/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Péptidos Cíclicos/uso terapéutico , Saposinas/química , Trombospondina 1/farmacología , Microambiente Tumoral , Aminoácidos/metabolismo , Animales , Antígenos CD36/metabolismo , Carcinoma Epitelial de Ovario , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ciclización , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos C57BL , Clasificación del Tumor , Neoplasias Glandulares y Epiteliales/secundario , Neoplasias Ováricas/secundario , Péptidos Cíclicos/farmacología , Análisis de Regresión , Análisis de Matrices Tisulares , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Mol Cancer Res ; 12(5): 754-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24574516

RESUMEN

UNLABELLED: The angiogenic switch, a rate-limiting step in tumor progression, has already occurred by the time most human tumors are detectable. However, despite significant study of the mechanisms controlling this switch, the kinetics and reversibility of the process have not been explored. The stability of the angiogenic phenotype was examined using an established human liposarcoma xenograft model. Nonangiogenic cells inoculated into immunocompromised mice formed microscopic tumors that remained dormant for approximately 125 days (vs. <40 days for angiogenic cells) whereupon the vast majority (>95%) initiated angiogenic growth with second-order kinetics. These original, clonally derived angiogenic tumor cells were passaged through four in vivo cycles. At each cycle, a new set of single-cell clones was established from the most angiogenic clone and characterized for in vivo for tumorigenic activity. A total of 132 single-cell clones were tested in the second, third, and fourth in vivo passage. Strikingly, at each passage, a portion of the single-cell clones formed microscopic, dormant tumors. Following dormancy, like the original cell line, these revertant tumors spontaneously switched to the angiogenic phenotype. Finally, revertant clones were transcriptionally profiled and their angiogenic output determined. Collectively, these data demonstrate that the angiogenic phenotype in tumors is malleable and can spontaneously revert to the nonangiogenic phenotype in a population of human tumor cells. IMPLICATIONS: Leveraging the rate of reversion to the nonangiogenic phenotype and tumor dormancy may be a novel anticancer strategy.


Asunto(s)
Liposarcoma/irrigación sanguínea , Liposarcoma/patología , Animales , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Expresión Génica , Xenoinjertos , Humanos , Masculino , Ratones , Ratones SCID , Neovascularización Patológica/patología , Fenotipo
16.
Cancer Discov ; 3(5): 578-89, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23633432

RESUMEN

UNLABELLED: Metastatic tumors have been shown to establish permissive microenvironments for metastases via recruitment of bone marrow-derived cells. Here, we show that metastasis-incompetent tumors are also capable of generating such microenvironments. However, in these situations, the otherwise prometastatic Gr1(+) myeloid cells create a metastasis-refractory microenvironment via the induction of thrombospondin-1 (Tsp-1) by tumor-secreted prosaposin. Bone marrow-specific genetic deletion of Tsp-1 abolished the inhibition of metastasis, which was restored by bone marrow transplant from Tsp-1(+) donors. We also developed a 5-amino acid peptide from prosaposin as a pharmacologic inducer of Tsp-1 in Gr1(+) bone marrow cells, which dramatically suppressed metastasis. These results provide mechanistic insights into why certain tumors are deficient in metastatic potential and implicate recruited Gr1(+) myeloid cells as the main source of Tsp-1. The results underscore the plasticity of Gr1(+) cells, which, depending on the context, promote or inhibit metastasis, and suggest that the peptide could be a potential therapeutic agent against metastatic cancer. SIGNIFICANCE: The mechanisms of metastasis suppression are poorly understood. Here, we have identified a novel mechanism whereby metastasis-incompetent tumors generate metastasis-suppressive microenvironments in distant organs by inducing Tsp-1 expression in the bone marrow­derived Gr1+myeloid cells. A 5-amino acid peptide with Tsp-1­inducing activity was identified as a therapeutic agent against metastatic cancer.


Asunto(s)
Antígenos Ly/metabolismo , Antígeno CD11b/metabolismo , Neoplasias/metabolismo , Trombospondina 1/metabolismo , Animales , Células de la Médula Ósea/citología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Metástasis de la Neoplasia , Oligopéptidos/farmacología , Microambiente Tumoral
17.
Cold Spring Harb Perspect Med ; 2(12): a006676, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23209177

RESUMEN

The tumor-associated stroma has been shown to play a significant role in cancer formation. Paracrine signaling interactions between epithelial tumor cells and stromal cells are a key component in the transformation and proliferation of tumors in several organs. Whereas the intracellular signaling pathways regulating the expression of several pro- and antiangiogenic proteins have been well characterized in human cancer cells, the intercellular signaling that takes place between tumor cells and the surrounding tumor-associated stroma has not been as extensively studied with regard to the regulation of angiogenesis. In this chapter we define the key players in the regulation of angiogenesis and examine how their expression is regulated in the tumor-associated stroma. The resulting analysis is often seemingly paradoxical, underscoring the complexity of intercellular signaling within tumors and the need to better understand the environmental context underlying these signaling mechanisms.


Asunto(s)
Neoplasias/irrigación sanguínea , Neovascularización Patológica/patología , Microambiente Tumoral/fisiología , Células de la Médula Ósea/fisiología , Comunicación Celular/fisiología , Transformación Celular Neoplásica/patología , Factor 2 de Crecimiento de Fibroblastos/fisiología , Fibroblastos/fisiología , Hormonas/fisiología , Humanos , Metaloproteinasas de la Matriz/fisiología , Invasividad Neoplásica/fisiopatología , Neoplasias/patología , Neoplasias/fisiopatología , Neovascularización Patológica/fisiopatología , Receptores Citoplasmáticos y Nucleares/fisiología , Células del Estroma/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología
18.
J Natl Cancer Inst ; 98(5): 316-25, 2006 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-16507828

RESUMEN

BACKGROUND: Microscopic human cancers can remain dormant for life. Tumor progression depends on sequential events, including a switch to the angiogenic phenotype, i.e., initial recruitment of new vessels. We previously demonstrated that human tumors contain tumor cell populations that are heterogeneous in angiogenic activity. Here, we separated angiogenic from nonangiogenic human tumor cell populations and compared their growth. METHODS: Severe combined immunodeficient (SCID) mice were inoculated with nonangiogenic human MDA-MB-436 breast adenocarcinoma, KHOS-24OS osteosarcoma, or T98G glioblastoma cells. Most of the resulting tumors remained microscopic (<1 mm diameter), but some eventually became angiogenic and enlarged and were used to isolate angiogenic tumor cells. Angiogenic and nonangiogenic tumor cells were inoculated into SCID mice, and time to the development of palpable tumors was determined. Cell proliferation was assayed in vitro by growth curves and in vivo by staining for proliferating cell nuclear antigen or Ki67. Microscopic tumors from both tumor cell populations were examined for histologic evidence of vascular development 14 days after inoculation in mice. Expression of the angiogenesis inhibitor thrombospondin-1 was examined by immunoblotting. RESULTS: Nonangiogenic tumors of each tumor type developed palpable tumors after means of 119 days (range: 53-185 days) for breast cancer, 238 days (184-291 days) for osteosarcoma, and 226 days (150-301 days) for glioblastoma. Angiogenic cells developed palpable tumors within 20 days after inoculation. However, nonangiogenic and angiogenic cells of each tumor type had similar proliferation rates. Fourteen days after tumor cell inoculation, tumors from angiogenic cells showed evidence of functional vasculature. In contrast, nonangiogenic tumors remained microscopic in size with absent or nonfunctional vasculature. Thrombospondin-1 expression was statistically significantly lower (by five- to 23-fold, depending on tumor type) in angiogenic than nonangiogenic cells. CONCLUSIONS: This model provides a conceptual framework and a reproducible in vivo system to study unresolved central questions in cancer biology regarding the initiation, reversibility, and molecular regulation of the timing of the angiogenic switch.


Asunto(s)
Adenocarcinoma/irrigación sanguínea , Glioblastoma/irrigación sanguínea , Neovascularización Patológica , Osteosarcoma/irrigación sanguínea , Animales , Línea Celular Tumoral , Proliferación Celular , Ensayo de Inmunoadsorción Enzimática , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Immunoblotting , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Ratones , Ratones SCID , Fenotipo , Trombospondina 1/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Proc Natl Acad Sci U S A ; 102(1): 175-9, 2005 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-15611471

RESUMEN

Burkitt's lymphoma (BL) is an aggressive B cell neoplasm, which is one of the most common neoplasms of childhood. It is highly widespread in East Africa, where it appears in endemic form associated with Epstein-Barr virus (EBV) infection, and around the world in a sporadic form in which EBV infection is much less common. In addition to being the first human neoplasm to be associated with EBV, BL is associated with a characteristic translocation, in which the Ig promoter is translocated to constitutively activate the c-myc oncogene. Although many BLs respond well to chemotherapy, a significant fraction fails to respond to therapy, leading to death. In this article, we demonstrate that EBV-positive BL expresses high levels of activated mitogen-activated protein kinase and reactive oxygen species (ROS), and that ROS directly regulate NF-kappaB activation. EBV-negative BLs exhibit activation of phosphoinositol 3-kinase, but do not have elevated levels of ROS. Elevated reactive oxygen may play a role in diverse forms of viral carcinogenesis in humans, including cancers caused by EBV, hepatitis B, C, and human T cell lymphotropic virus. Our findings imply that inhibition of ROS may be useful in the treatment of EBV-induced neoplasia.


Asunto(s)
Linfoma de Burkitt/virología , Herpesvirus Humano 4/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología , Linfoma de Burkitt/enzimología , Linfoma de Burkitt/metabolismo , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Humanos , FN-kappa B/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Virales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA