Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39038830

RESUMEN

We explored the neural correlates of familiarity with people and places using a naturalistic viewing paradigm. Neural responses were measured using functional magnetic resonance imaging, while participants viewed a movie taken from Game of Thrones. We compared inter-subject correlations and functional connectivity in participants who were either familiar or unfamiliar with the TV series. Higher inter-subject correlations were found between familiar participants in regions, beyond the visual brain, that are typically associated with the processing of semantic, episodic, and affective information. However, familiarity also increased functional connectivity between face and scene regions in the visual brain and the nonvisual regions of the familiarity network. To determine whether these regions play an important role in face recognition, we measured responses in participants with developmental prosopagnosia (DP). Consistent with a deficit in face recognition, the effect of familiarity was significantly attenuated across the familiarity network in DP. The effect of familiarity on functional connectivity between face regions and the familiarity network was also attenuated in DP. These results show that the neural response to familiarity involves an extended network of brain regions and that functional connectivity between visual and nonvisual regions of the brain plays an important role in the recognition of people and places during natural viewing.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Reconocimiento en Psicología , Humanos , Masculino , Femenino , Reconocimiento en Psicología/fisiología , Adulto , Adulto Joven , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Prosopagnosia/fisiopatología , Prosopagnosia/diagnóstico por imagen , Mapeo Encefálico , Reconocimiento Facial/fisiología , Estimulación Luminosa/métodos , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Percepción Visual/fisiología
2.
Hum Brain Mapp ; 45(3): e26628, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38376190

RESUMEN

The recognition and perception of places has been linked to a network of scene-selective regions in the human brain. While previous studies have focussed on functional connectivity between scene-selective regions themselves, less is known about their connectivity with other cortical and subcortical regions in the brain. Here, we determine the functional and structural connectivity profile of the scene network. We used fMRI to examine functional connectivity between scene regions and across the whole brain during rest and movie-watching. Connectivity within the scene network revealed a bias between posterior and anterior scene regions implicated in perceptual and mnemonic aspects of scene perception respectively. Differences between posterior and anterior scene regions were also evident in the connectivity with cortical and subcortical regions across the brain. For example, the Occipital Place Area (OPA) and posterior Parahippocampal Place Area (PPA) showed greater connectivity with visual and dorsal attention networks, while anterior PPA and Retrosplenial Complex showed preferential connectivity with default mode and frontoparietal control networks and the hippocampus. We further measured the structural connectivity of the scene network using diffusion tractography. This indicated both similarities and differences with the functional connectivity, highlighting biases between posterior and anterior regions, but also between ventral and dorsal scene regions. Finally, we quantified the structural connectivity between the scene network and major white matter tracts throughout the brain. These findings provide a map of the functional and structural connectivity of scene-selective regions to each other and the rest of the brain.


Asunto(s)
Mapeo Encefálico , Neocórtex , Humanos , Imagen por Resonancia Magnética , Imagen de Difusión Tensora , Memoria
3.
Neuroimage ; 277: 120228, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37339700

RESUMEN

Functional gradients, in which response properties change gradually across a brain region, have been proposed as a key organising principle of the brain. Recent studies using both resting-state and natural viewing paradigms have indicated that these gradients may be reconstructed from functional connectivity patterns via "connectopic mapping" analyses. However, local connectivity patterns may be confounded by spatial autocorrelations artificially introduced during data analysis, for instance by spatial smoothing or interpolation between coordinate spaces. Here, we investigate whether such confounds can produce illusory connectopic gradients. We generated datasets comprising random white noise in subjects' functional volume spaces, then optionally applied spatial smoothing and/or interpolated the data to a different volume or surface space. Both smoothing and interpolation induced spatial autocorrelations sufficient for connectopic mapping to produce both volume- and surface-based local gradients in numerous brain regions. Furthermore, these gradients appeared highly similar to those obtained from real natural viewing data, although gradients generated from real and random data were statistically different in certain scenarios. We also reconstructed global gradients across the whole-brain - while these appeared less susceptible to artificial spatial autocorrelations, the ability to reproduce previously reported gradients was closely linked to specific features of the analysis pipeline. These results indicate that previously reported gradients identified by connectopic mapping techniques may be confounded by artificial spatial autocorrelations introduced during the analysis, and in some cases may reproduce poorly across different analysis pipelines. These findings imply that connectopic gradients need to be interpreted with caution.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Análisis Espacial , Análisis de Datos
4.
Ecol Lett ; 26(6): 965-982, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36988091

RESUMEN

Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.


Asunto(s)
Biodiversidad , Aves , Animales , Filogenia , Islas , Ecosistema
5.
Ecol Lett ; 25(7): 1597-1603, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35474408

RESUMEN

We introduce a new approach-acoustic restoration-focusing on the applied utility of soundscapes for restoration, recognising the rich ecological and social values they encapsulate. Broadcasting soundscapes in disturbed areas can accelerate recolonisation of animals and the microbes and propagules they carry; long duration recordings are also ideal sources of data for benchmarking restoration initiatives and evocative engagement tools.


Asunto(s)
Acústica , Benchmarking , Animales , Biota , Ecosistema
6.
Eur J Neurosci ; 56(3): 4107-4120, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35703007

RESUMEN

Neuroimaging studies using univariate and multivariate approaches have shown that the fusiform face area (FFA) and parahippocampal place area (PPA) respond selectively to images of faces and places. The aim of this study was to determine the extent to which this selectivity to faces or places is based on the shape or texture properties of the images. Faces and houses were filtered to manipulate their texture properties, while preserving the shape properties (spatial envelope) of the images. In Experiment 1, multivariate pattern analysis (MVPA) showed that patterns of fMRI response to faces and houses in FFA and PPA were predicted by the shape properties, but not by the texture properties of the image. In Experiment 2, a univariate analysis (fMR-adaptation) showed that responses in the FFA and PPA were sensitive to changes in both the shape and texture properties of the image. These findings can be explained by the spatial scale of the representation of images in the FFA and PPA. At a coarser scale (revealed by MVPA), the neural selectivity to faces and houses is sensitive to variation in the shape properties of the image. However, at a finer scale (revealed by fMR-adaptation), the neural selectivity is sensitive to the texture properties of the image. By combining these neuroimaging paradigms, our results provide insights into the spatial scale of the neural representation of faces and places in the ventral-temporal cortex.


Asunto(s)
Corteza Visual , Adaptación Fisiológica , Mapeo Encefálico , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Corteza Visual/fisiología
7.
Proc Biol Sci ; 289(1978): 20220358, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35858071

RESUMEN

Mistletoes are hemiparasitic plants and keystone species in many ecosystems globally. Given predicted increases in drought frequency and intensity, mistletoes may be crucial for moderating drought impacts on community structure. Dependent on host vascular flows, mistletoes can succumb to stress when water availability falls, making them susceptible to mortality during drought. We counted mistletoe across greater than 350 000 km2 of southeastern Australia and conducted standardized bird surveys between 2016 and 2021, spanning a major drought event in 2018-2019. We aimed to identify predictors of mistletoe abundance and mortality and determine whether mistletoes might moderate drought impacts on woodland birds. Live mistletoe abundance varied with tree species composition, land use and presence of mistletoebirds. Mistletoe mortality was widespread, consistent with high 2018/2019 summer temperatures, low 2019/2020 summer rainfall and the interaction between summer temperatures and rainfall in 2019/2020. The positive association between surviving mistletoes and woodland birds was greatest in the peak drought breeding seasons of 2018/2019 and 2019/2020, particularly for small residents and insectivores. Paradoxically, mistletoes could moderate drought impacts on birds, but are themselves vulnerable to drought-induced mortality. An improved understanding of the drivers and dynamics of mistletoe mortality is needed to address potential cascading trophic impacts associated with mistletoe die-off.


Asunto(s)
Muérdago , Animales , Aves , Sequías , Ecosistema , Fitomejoramiento
8.
Plant Physiol ; 185(4): 1309-1324, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33793868

RESUMEN

Parasitic plants are mostly viewed as pests. This is caused by several species causing serious damage to agriculture and forestry. There is however much more to parasitic plants than presumed weeds. Many parasitic plans exert even positive effects on natural ecosystems and human society, which we review in this paper. Plant parasitism generally reduces the growth and fitness of the hosts. The network created by a parasitic plant attached to multiple host plant individuals may however trigger transferring systemic signals among these. Parasitic plants have repeatedly been documented to play the role of keystone species in the ecosystems. Harmful effects on community dominants, including invasive species, may facilitate species coexistence and thus increase biodiversity. Many parasitic plants enhance nutrient cycling and provide resources to other organisms like herbivores or pollinators, which contributes to facilitation cascades in the ecosystems. There is also a long tradition of human use of parasitic plants for medicinal and cultural purposes worldwide. Few species provide edible fruits. Several parasitic plants are even cultivated by agriculture/forestry for efficient harvesting of their products. Horticultural use of some parasitic plant species has also been considered. While providing multiple benefits, parasitic plants should always be used with care. In particular, parasitic plant species should not be cultivated outside their native geographical range to avoid the risk of their uncontrolled spread and the resulting damage to ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Interacciones Huésped-Parásitos/fisiología , Plantas/parasitología , República Checa
9.
PLoS Comput Biol ; 16(10): e1008335, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33112846

RESUMEN

Facial expressions carry key information about an individual's emotional state. Research into the perception of facial emotions typically employs static images of a small number of artificially posed expressions taken under tightly controlled experimental conditions. However, such approaches risk missing potentially important facial signals and within-person variability in expressions. The extent to which patterns of emotional variance in such images resemble more natural ambient facial expressions remains unclear. Here we advance a novel protocol for eliciting natural expressions from dynamic faces, using a dimension of emotional valence as a test case. Subjects were video recorded while delivering either positive or negative news to camera, but were not instructed to deliberately or artificially pose any specific expressions or actions. A PCA-based active appearance model was used to capture the key dimensions of facial variance across frames. Linear discriminant analysis distinguished facial change determined by the emotional valence of the message, and this also generalised across subjects. By sampling along the discriminant dimension, and back-projecting into the image space, we extracted a behaviourally interpretable dimension of emotional valence. This dimension highlighted changes commonly represented in traditional face stimuli such as variation in the internal features of the face, but also key postural changes that would typically be controlled away such as a dipping versus raising of the head posture from negative to positive valences. These results highlight the importance of natural patterns of facial behaviour in emotional expressions, and demonstrate the efficacy of using data-driven approaches to study the representation of these cues by the perceptual system. The protocol and model described here could be readily extended to other emotional and non-emotional dimensions of facial variance.


Asunto(s)
Emociones/clasificación , Expresión Facial , Procesamiento de Imagen Asistido por Computador/métodos , Adulto , Algoritmos , Cara/anatomía & histología , Cara/fisiología , Femenino , Humanos , Masculino , Grabación en Video
10.
Am J Bot ; 108(1): 8-21, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33403666

RESUMEN

All organisms engage in parasitic relations, as either parasites or hosts. Some species may even play both roles simultaneously. Among flowering plants, the most widespread form of parasitism is characterized by the development of an intrusive organ called the haustorium, which absorbs water and nutrients from the host. Despite this functionally unifying feature of parasitic plants, haustoria are not homologous structures; they have evolved 12 times independently. These plants represent ca. 1% of all extant flowering species and show a wide diversity of life histories. A great variety of plants may also serve as hosts, including other parasitic plants. This phenomenon of parasitic exploitation of another parasite, broadly known as hyper- or epiparasitism, is well described among bacteria, fungi, and animals, but remains poorly understood among plants. Here, we review empirical evidence of plant hyperparasitism, including variations of self-parasitism, discuss the diversity and ecological importance of these interactions, and suggest possible evolutionary mechanisms. Hyperparasitism may provide benefits in terms of improved nutrition and enhanced host-parasite compatibility if partners are related. Different forms of self-parasitism may facilitate nutrient sharing among and within parasitic plant individuals, while also offering potential for the evolution of hyperparasitism. Cases of hyperparasitic interactions between parasitic plants may affect the ecology of individual species and modulate their ecosystem impacts. Parasitic plant phenology and disperser feeding behavior are considered to play a major role in the occurrence of hyperparasitism, especially among mistletoes. There is also potential for hyperparasites to act as biological control agents of invasive primary parasitic host species.


Asunto(s)
Magnoliopsida , Orobanchaceae , Parásitos , Animales , Ecosistema , Interacciones Huésped-Parásitos , Plantas
11.
Am Nat ; 196(6): 769-774, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33211557

RESUMEN

AbstractThe growth habit of mistletoes, the only woody, parasitic plants to infect host canopies, represents a key innovation. How this aerially parasitic habit originated is unknown; mistletoe macrofossils are relatively recent, from long after they adapted to canopy life and evolved showy, bird-pollinated flowers; sticky, bird-dispersed seeds; and woody haustoria diverting water and nutrients from host branches. Since the transition to aerial parasitism predates the origin of mistletoes' contemporary avian seed dispersers by 20-40 million years, this leaves unanswered the question of who the original mistletoe dispersers were. By integrating fully resolved phylogenies of mistletoes and aligning the timing of historic events, I identify two ancient mammals as likely candidates for planting Viscaceae and Loranthaceae in the canopy. Just as modern mouse lemurs and galagos disperse viscaceous mistletoe externally (grooming the sticky seeds from their fur), Cretaceous primates (e.g., Purgatorius) may have transported seeds of root-parasitic understory shrubs up into the canopy of Laurasian forests. In the Eocene, ancestors of today's mistletoe-dispersing marsupials, Dromiciops, likely fed on the nutritious fruit of root-parasitic loranthaceous shrubs, depositing the seeds atop western Gondwanan forest crowns. Once mistletoes colonized the canopy, subsequent evolution and diversification coincided with the rise of nectar- and fruit-dependent birds.


Asunto(s)
Conducta Alimentaria , Muérdago , Dispersión de Semillas , Animales , Evolución Biológica , Frutas , Marsupiales , Primates , Árboles/parasitología
12.
Hum Brain Mapp ; 40(16): 4716-4731, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31338936

RESUMEN

The ventral visual pathway is directly involved in the perception and recognition of objects. However, the extent to which the neural representation of objects in this region reflects low-level or high-level properties remains unresolved. A problem in resolving this issue is that only a small proportion of the objects experienced during natural viewing can be shown during a typical experiment. This can lead to an uneven sampling of objects that biases our understanding of how they are represented. To address this issue, we developed a data-driven approach to stimulus selection that involved describing a large number objects in terms of their image properties. In the first experiment, clusters of objects were evenly selected from this multi-dimensional image space. Although the clusters did not have any consistent semantic features, each elicited a distinct pattern of neural response. In the second experiment, we asked whether high-level, category-selective patterns of response could be elicited by objects from other categories, but with similar image properties. Object clusters were selected based on the similarity of their image properties to objects from five different categories (bottle, chair, face, house, and shoe). The pattern of response to each metameric object cluster was similar to the pattern elicited by objects from the corresponding category. For example, the pattern for bottles was similar to the pattern for objects with similar image properties to bottles. In both experiments, the patterns of response were consistent across participants providing evidence for common organising principles. This study provides a more ecological approach to understanding the perceptual representations of objects and reveals the importance of image properties.


Asunto(s)
Vías Visuales/diagnóstico por imagen , Adulto , Algoritmos , Mapeo Encefálico/métodos , Análisis por Conglomerados , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Corteza Visual/diagnóstico por imagen , Adulto Joven
13.
Ecol Appl ; 29(8): e01997, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31483902

RESUMEN

In an era characterized by recurrent large wildfires in many parts of the globe, there is a critical need to understand how animal species respond to fires, the rates at which populations can recover, and the functional changes fires may cause. Using quantified changes in habitat parameters over a ~400-yr post-fire chronosequence in an obligate-seeding Australian eucalypt woodland, we build and test predictions of how birds, as individual species and aggregated into functional groups according to their use of specific habitat resources, respond to time since fire. Individual bird species exhibited four generalized response types to time since fire: incline, decline, delayed, and bell. All significant relationships between bird functional group richness or abundance and time since fire were consistent with predictions based on known time-since-fire-associated changes in habitat features putatively important for these bird groups. Consequently, we argue that the bird community is responding to post-fire successional changes in habitat as per the habitat accommodation model, rather than to time since fire per se, and that our functional framework will be of value in predicting bird responses to future disturbances in this and other obligate-seeder forest and woodland ecosystems. Most bird species and functional groups that were affected by time since fire were associated with long-unburned woodlands. In the context of recent large, stand-replacement wildfires that have affected a substantial proportion of obligate-seeder eucalypt woodlands, and the multi-century timescales over which post-fire succession occurs, it would appear preferable from a bird conservation perspective if fires initiating loss of currently long-unburned woodlands were minimized. Once long-unburned woodlands are transformed by fire into recently burned woodlands, there is limited scope for alternative management interventions to accelerate the rate of habitat development after fire, or supplement the resources formerly provided to birds by long-unburned woodlands, with the limited exception of augmenting hollow availability for key hollow-nesting species.


Asunto(s)
Ecosistema , Incendios , Animales , Australia , Aves , Conservación de los Recursos Naturales , Bosques , Dinámica Poblacional
14.
Appl Environ Microbiol ; 83(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28576759

RESUMEN

Streptococcus pneumoniae is a main cause of child mortality worldwide, but strains also asymptomatically colonize the upper airways of most children and form biofilms. Recent studies have demonstrated that ∼50% of colonized children carry at least two different serotypes (i.e., strains) in the nasopharynx; however, studies of how strains coexist are limited. In this work, we investigated the physiological, genetic, and ecological requirements for the relative distribution of densities, and spatial localization, of pneumococcal strains within biofilm consortia. Biofilm consortia were prepared with vaccine type strains (i.e., serotype 6B [S6B], S19F, or S23F) and strain TIGR4 (S4). Experiments first revealed that the relative densities of S6B and S23F were similar in biofilm consortia. The density of S19F strains, however, was reduced to ∼10% in biofilm consortia, including either S6B, S23F, or TIGR4, in comparison to S19F monostrain biofilms. Reduction of S19F density within biofilm consortia was also observed in a simulated nasopharyngeal environment. Reduction of relative density was not related to growth rates, since the Malthusian parameter demonstrated similar rates of change of density for most strains. To investigate whether quorum sensing (QS) regulates relative densities in biofilm consortia, two different mutants were prepared: a TIGR4ΔluxS mutant and a TIGR4ΔcomC mutant. The density of S19F strains, however, was similarly reduced when consortia included TIGR4, TIGR4ΔluxS, or TIGR4ΔcomC Moreover, production of a different competence-stimulating peptide (CSP), CSP1 or CSP2, was not a factor that affected dominance. Finally, a mathematical model, confocal experiments, and experiments using Transwell devices demonstrated physical contact-mediated control of pneumococcal density within biofilm consortia.IMPORTANCEStreptococcus pneumoniae kills nearly half a million children every year, but it also produces nasopharyngeal biofilm consortia in a proportion of asymptomatic children, and these biofilms often contain two strains (i.e., serotypes). In our study, we investigated how strains coexist within pneumococcal consortia produced by vaccine serotypes S4, S6B, S19F, and S23F. Whereas S6B and S23F shared the biofilm consortium, our studies demonstrated reduction of the relative density of S19F strains, to ∼10% of what it would otherwise be if alone, in consortial biofilms formed with S4, S6B, or S23F. This dominance was not related to increased fitness when competing for nutrients, nor was it regulated by quorum-sensing LuxS/AI-2 or Com systems. It was demonstrated, however, to be enhanced by physical contact rather than by a product(s) secreted into the supernatant, as would naturally occur in the semidry nasopharyngeal environment. Competitive interactions within pneumococcal biofilm consortia regulate nasopharyngeal density, a risk factor for pneumococcal disease.


Asunto(s)
Biopelículas , Enfermedades Nasofaríngeas/microbiología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/crecimiento & desarrollo , Streptococcus pneumoniae/fisiología , Portador Sano/microbiología , Humanos , Percepción de Quorum , Serogrupo , Streptococcus pneumoniae/genética
15.
Neuroimage ; 124(Pt A): 107-117, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26341028

RESUMEN

Neuroimaging studies have found distinct patterns of response to different categories of scenes. However, the relative importance of low-level image properties in generating these response patterns is not fully understood. To address this issue, we directly manipulated the low level properties of scenes in a way that preserved the ability to perceive the category. We then measured the effect of these manipulations on category-selective patterns of fMRI response in the PPA, RSC and OPA. In Experiment 1, a horizontal-pass or vertical-pass orientation filter was applied to images of indoor and natural scenes. The image filter did not have a large effect on the patterns of response. For example, vertical- and horizontal-pass filtered indoor images generated similar patterns of response. Similarly, vertical- and horizontal-pass filtered natural scenes generated similar patterns of response. In Experiment 2, low-pass or high-pass spatial frequency filters were applied to the images. We found that image filter had a marked effect on the patterns of response in scene-selective regions. For example, low-pass indoor images generated similar patterns of response to low-pass natural images. The effect of filter varied across different scene-selective regions, suggesting differences in the way that scenes are represented in these regions. These results indicate that patterns of response in scene-selective regions are sensitive to the low-level properties of the image, particularly the spatial frequency content.


Asunto(s)
Encéfalo/fisiología , Reconocimiento Visual de Modelos/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
16.
Neuroimage ; 126: 173-83, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26619786

RESUMEN

Neuroimaging studies have revealed topographically organised patterns of response to different objects in the ventral visual pathway. These patterns are thought to be based on the form of the object. However, it is not clear what dimensions of object form are important. Here, we determined the extent to which spatial properties (energy across the image) could explain patterns of response in these regions. We compared patterns of fMRI response to images from different object categories presented at different retinal sizes. Although distinct neural patterns were evident to different object categories, changing the size (and thus the spatial properties) of the images had a significant effect on these patterns. Next, we used a computational approach to determine whether more fine-grained differences in the spatial properties can explain the patterns of neural response to different objects. We found that the spatial properties of the image were able to predict patterns of neural response, even when categorical factors were removed from the analysis. We also found that the effect of spatial properties on the patterns of response varies across the ventral visual pathway. These results show how spatial properties can be an important organising principle in the topography of the ventral visual pathway.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/fisiología , Reconocimiento Visual de Modelos/fisiología , Percepción del Tamaño/fisiología , Vías Visuales/fisiología , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Adulto Joven
17.
Neuroimage ; 129: 64-71, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26825440

RESUMEN

The ability to perceive facial expressions of emotion is essential for effective social communication. We investigated how the perception of facial expression emerges from the image properties that convey this important social signal, and how neural responses in face-selective brain regions might track these properties. To do this, we measured the perceptual similarity between expressions of basic emotions, and investigated how this is reflected in image measures and in the neural response of different face-selective regions. We show that the perceptual similarity of different facial expressions (fear, anger, disgust, sadness, happiness) can be predicted by both surface and feature shape information in the image. Using block design fMRI, we found that the perceptual similarity of expressions could also be predicted from the patterns of neural response in the face-selective posterior superior temporal sulcus (STS), but not in the fusiform face area (FFA). These results show that the perception of facial expression is dependent on the shape and surface properties of the image and on the activity of specific face-selective regions.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Expresión Facial , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Adulto Joven
18.
New Phytol ; 211(3): 803-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27322844

RESUMEN

803 I. 803 II. 804 III. 804 IV. 805 V. 805 VI. 806 References 807 SUMMARY: Rather than direct plant-plant interactions, research on the community-scale influence of mistletoes reveals hitherto unappreciated roles of animals in mediating facilitation. Lacking roots and reliant upon animal vectors, mistletoes represent model systems with which to understand mechanisms underlying interaction networks. In addition to direct effects on nutrient dynamics via enriched litter-fall, mistletoes are visited by pollinators, seed dispersers and natural enemies, complementing increased heterogeneity in nutrient returns reallocated from infected hosts with increased external inputs. These amplified bottom-up effects are coupled with top-down influences of insectivores attracted to infected hosts and stands by increased availability of favoured prey. Simultaneously influencing nutrient dynamics and plant-plant interactions from below and above, visiting animals help explain variation in the context dependence of facilitation.


Asunto(s)
Ecosistema , Animales , Bosques , Muérdago/fisiología , Clima Tropical
19.
J Neurosci ; 34(26): 8837-44, 2014 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-24966383

RESUMEN

Neuroimaging studies have revealed strong selectivity for object categories in high-level regions of the human visual system. However, it is unknown whether this selectivity is truly based on object category, or whether it reflects tuning for low-level features that are common to images from a particular category. To address this issue, we measured the neural response to different object categories across the ventral visual pathway. Each object category elicited a distinct neural pattern of response. Next, we compared the patterns of neural response between object categories. We found a strong positive correlation between the neural patterns and the underlying low-level image properties. Importantly, this correlation was still evident when the within-category correlations were removed from the analysis. Next, we asked whether basic image properties could also explain variation in the pattern of response to different exemplars from one object category (faces). A significant correlation was also evident between the similarity of neural patterns of response and the low-level properties of different faces, particularly in regions associated with face processing. These results suggest that the appearance of category-selective regions at this coarse scale of representation may be explained by the systematic convergence of responses to low-level features that are characteristic of each category.


Asunto(s)
Corteza Visual/fisiología , Vías Visuales/fisiología , Mapeo Encefálico , Femenino , Neuroimagen Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Estimulación Luminosa , Adulto Joven
20.
J Neurosci ; 34(31): 10347-60, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080595

RESUMEN

There is clear evidence that spatial attention increases neural responses to attended stimuli in extrastriate visual areas and, to a lesser degree, in earlier visual areas. Other evidence shows that neurons representing unattended locations can also be suppressed. However, the extent to which enhancement and suppression is observed, their stimulus dependence, and the stages of the visual system at which they are expressed remains poorly understood. Using fMRI we set out to characterize both the task and stimulus dependence of neural responses in the lateral geniculate nucleus (LGN), primary visual cortex (V1), and visual motion area (V5) in humans to determine where suppressive and facilitatory effects of spatial attention are expressed. Subjects viewed a lateralized drifting grating stimulus, presented at multiple stimulus contrasts, and performed one of three tasks designed to alter the spatial location of their attention. In retinotopic representations of the stimulus location, we observed increasing attention-dependent facilitation and decreasing dependence on stimulus contrast moving up the visual hierarchy from the LGN to V5. However, in the representations of unattended locations of the LGN and V1, we observed suppression, which was not significantly dependent on the attended stimulus contrast. These suppressive effects were also found in the pulvinar, which has been frequently associated with attention. We provide evidence, therefore, for a spatially selective suppressive mechanism that acts at a subcortical level.


Asunto(s)
Atención/fisiología , Mapeo Encefálico , Encéfalo/irrigación sanguínea , Inhibición Psicológica , Percepción Espacial/fisiología , Adulto , Análisis de Varianza , Encéfalo/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/irrigación sanguínea , Oxígeno/sangre , Estimulación Luminosa , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA