Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Phys Chem Chem Phys ; 26(7): 5986-5998, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38293812

RESUMEN

"Tin-oxo cage" organometallic compounds are considered as photoresists for extreme ultraviolet (EUV) photolithography. To gain insight into their electronic structure and reactivity to ionizing radiation, we trapped bare gas-phase n-butyltin-oxo cage dications [(BuSn)12O14(OH)6]2+ in an ion trap and investigated their fragmentation upon soft X-ray photoabsorption by means of mass spectrometry. In complementary experiments, the tin-oxo cages with hydroxide and trifluoroacetate counter-anions were cast in thin films and studied using X-ray transmission spectroscopy. Quantum-chemical calculations were used to interpret the observed spectra. At the carbon K-edge, a distinct pre-edge absorption band can be attributed to transitions in which electrons are promoted from C1s orbitals to the lowest unoccupied molecular orbitals, which are delocalized orbitals with strong antibonding (Sn-C σ*) character. At higher energies, the most prominent resonant transitions involve C-C and C-H σ* valence states and Rydberg (3s and 3p) states. In the solid state, the onset of continuum ionization is shifted by ∼5 eV to lower energy with respect to the gas phase, due to the electrostatic effect of the counterions. The O K-edge also shows a pre-edge absorption, but it is devoid of any specific features, because there are many transitions from the different O1s orbitals to a large number of vacant orbitals. In the gas phase, formation of the parent [(BuSn)12O14(OH)6]3+ radical ion is not observed at the C K-edge nor at the O K-edge, because the loss of a butyl group from this species is very efficient. We do observe a number of triply charged photofragment ions, some of which have lost up to 5 butyl groups. Structures of these species are proposed based on quantum-chemical calculations, and pathways of formation are discussed. Our results provide insight into the electronic structure of alkyltin-oxo cages, which is a prerequisite for understanding their response to EUV photons and their performance as EUV photoresists.

2.
J Synchrotron Radiat ; 29(Pt 4): 1054-1064, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35787573

RESUMEN

While the general effects of experimental conditions such as photon flux and sample thickness on the quality of data acquired by scanning transmission X-ray microscopy (STXM) are widely known at a basic level, the specific details are rarely discussed. This leaves the community open to forming misconceptions that can lead to poor decisions in the design and execution of STXM measurements. A formal treatment of the uncertainty and distortions of transmission signals (due to dark counts, higher-order photons and poor spatial or spectral resolution) is presented here to provide a rational basis for the pursuit of maximizing data quality in STXM experiments. While we find an optimum sample optical density of 2.2 in ideal conditions, the distortions considered tend to have a stronger effect for thicker samples and so ∼1 optical density at the analytical energy is recommended, or perhaps even thinner if significant distortion effects are expected (e.g. lots of higher-order light is present in the instrument). (Note that X-ray absorption calculations based on simple elemental composition do not include near-edge resonances and so cannot accurately represent the spectral resonances typically employed for contrast in STXM.) Further, we present a method for objectively assessing the merits of higher-order suppression in terms of its impact on the quality of transmission measurements that should be useful for the design of synchrotron beamlines.

3.
J Synchrotron Radiat ; 28(Pt 4): 1146-1158, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34212878

RESUMEN

Through Monte Carlo simulations, we investigate how various experimental parameters can influence the quality of time-resolved scanning transmission X-ray microscopy images. In particular, the effect of the X-ray photon flux, of the thickness of the investigated samples, and of the frequency of the dynamical process under investigation on the resulting time-resolved image are investigated. The ideal sample and imaging conditions that allow for an optimal image quality are then identifed.

4.
J Synchrotron Radiat ; 28(Pt 3): 924-929, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33950000

RESUMEN

The three-dimensional (3D) dual-energy focal stacks (FS) imaging method has been developed to quickly obtain the spatial distribution of an element of interest in a sample; it is a combination of the 3D FS imaging method and two-dimensional (2D) dual-energy contrast imaging based on scanning transmission soft X-ray microscopy (STXM). A simulation was firstly performed to verify the feasibility of the 3D elemental reconstruction method. Then, a sample of composite nanofibers, polystyrene doped with ferric acetylacetonate [Fe(acac)3], was further investigated to quickly reveal the spatial distribution of Fe(acac)3 in the sample. Furthermore, the data acquisition time was less than that for STXM nanotomography under similar resolution conditions and did not require any complicated sample preparation. The novel approach of 3D dual-energy FS imaging, which allows fast 3D elemental mapping, is expected to provide invaluable information for biomedicine and materials science.

5.
Chemistry ; 27(5): 1688-1699, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-32729972

RESUMEN

The Cr/SiO2 Phillips catalyst has taken a central role in ethylene polymerization since its invention in 1953. The uniqueness of this catalyst is related to its ability to produce broad molecular weight distribution (MWD) PE materials as well as that no co-catalysts are required to attain activity. Nonetheless, co-catalysts in the form of metal-alkyls can be added for scavenging poisons, enhancing catalyst activity, reducing the induction period, and tailoring polymer characteristics. The activation mechanism and related polymerization mechanism remain elusive, despite extensive industrial and academic research. Here, we show that by varying the type and amount of metal-alkyl co-catalyst, we can tailor polymer properties around a single Cr/SiO2 Phillips catalyst formulation. Furthermore, we show that these different polymer properties exist in the early stages of polymerization. We have used conventional polymer characterization techniques, such as size exclusion chromatography (SEC) and 13 C NMR, for studying the metal-alkyl co-catalyst effect on short-chain branching (SCB), long-chain branching (LCB) and molecular weight distribution (MWD) at the bulk scale. In addition, scanning transmission X-ray microscopy (STXM) was used as a synchrotron technique to study the PE formation in the early stages: allowing us to investigate the produced type of early-stage PE within one particle cross-section with high energy resolution and nanometer scale spatial resolution.

6.
Nano Lett ; 20(2): 1305-1314, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31951418

RESUMEN

X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (µm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.


Asunto(s)
Medios de Contraste/química , Imagenología Tridimensional/métodos , Nanoestructuras/química , Tomografía por Rayos X/métodos , Medios de Contraste/uso terapéutico , Humanos , Magnetismo , Microscopía Electrónica de Rastreo , Nanoestructuras/uso terapéutico , Fotones , Radiografía , Rayos X
7.
Phys Chem Chem Phys ; 21(37): 20613-20627, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31528972

RESUMEN

Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl2 and observed the in situ chemical reaction that oxidized Fe2+ to Fe3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 µm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe2+ fraction, α, out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0-20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, HO3, and diffusion coefficients for ozone and iron, DO3 and DFe, respectively. We found that HO3 is higher in our xanthan gum/FeCl2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both DO3 and DFe. In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.

8.
Nanotechnology ; 29(36): 36LT03, 2018 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-29901453

RESUMEN

We report on the near edge x-ray absorption fine structure (NEXAFS) spectroscopy of hybrid organic-inorganic resists. These materials are nonchemically amplified systems based on Si, Zr, and Ti oxides, synthesized from organically modified precursors and transition metal alkoxides by a sol-gel route and designed for ultraviolet, extreme ultraviolet (EUV) and electron beam lithography. The experiments were conducted using a scanning transmission x-ray microscope (STXM) which combines high spatial-resolution microscopy and NEXAFS spectroscopy. The absorption spectra were collected in the proximity of the carbon edge (∼290 eV) before and after in situ exposure, enabling the measurement of a significant photo-induced degradation of the organic group (phenyl or methyl methacrylate, respectively), the degree of which depends on the configuration of the ligand. Photo-induced degradation was more efficient in the resist synthesized with pendant phenyl substituents than it was in the case of systems based on bridging phenyl groups. The degradation of the methyl methacrylate group was relatively efficient, with about half of the initial ligands dissociated upon exposure. Our data reveal that such dissociation can produce different outcomes, depending on the structural configuration. While all the organic groups were expected to detach and desorb from the resist in their entirety, a sizeable amount of them remained and formed undesired byproducts such as alkene chains. In the framework of the materials synthesis and engineering through specific building blocks, these results provide a deeper insight into the photochemistry of resists, in particular for EUV lithography.

9.
Small ; 13(10)2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28026148

RESUMEN

On-chip microvalves regulate electrical and fluidic access to an array of nanopores integrated within microfluidic networks. This configuration allows for on-chip sequestration of biomolecular samples in various flow channels and analysis by independent nanopores.

10.
Nanotechnology ; 28(43): 435703, 2017 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-28885185

RESUMEN

Endohedral lanthanide ions packed inside carbon nanotubes (CNTs) in a one-dimensional assembly have been studied with a combination of high resolution transmission electron microscopy (HRTEM), scanning transmission x-ray microscopy (STXM), and x-ray magnetic circular dichroism (XMCD). By correlating HRTEM and STXM images we show that structures down to 30 nm are resolved with chemical contrast and record x-ray absorption spectra from endohedral lanthanide ions embedded in individual nanoscale CNT bundles. XMCD measurements of an Er3N@C80 bulk sample and a macroscopic assembly of filled CNTs indicate that the magnetic properties of the endohedral Er3+ ions are unchanged when encapsulated in CNTs. This study demonstrates the feasibility of local magnetic x-ray characterisation of low concentrations of lanthanide ions embedded in molecular nanostructures.

11.
Electrophoresis ; 36(2): 298-304, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348197

RESUMEN

Counting of Escherichia coli DH5α-cell suspensions in PBS is performed using a microflow cytometer based on a photonic-microfluidic integrated device. Side-scattered light signals are used to count the E. coli cells. A detection efficiency of 92% is achieved when compared with the expected count from a hemocytometer. The detection efficiency is correlated to the ratio of sample to sheath flow rates. It is demonstrated that E. coli can be easily distinguished from beads of similar sizes (2-4 µm) as their scattering intensities are different.


Asunto(s)
Escherichia coli , Citometría de Flujo/instrumentación , Citometría de Flujo/métodos , Técnicas Analíticas Microfluídicas , Técnicas Bacteriológicas/instrumentación , Técnicas Bacteriológicas/métodos , Diseño de Equipo , Poliestirenos
12.
J Synchrotron Radiat ; 21(Pt 5): 1153-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25178006

RESUMEN

Quantitative studies of soft X-ray induced radiation damage in zone-plate-based X-ray microspectroscopy have so far concentrated on investigations of homogeneous specimens. However, more complex materials can show unexpected radiation-induced behaviour. Here a quantitative radiochemical analysis of biological tissue from Xantophan morganii praedicta eyes is presented. Contrast enhancement due to tissue selective mass loss leading to a significant improvement of imaging quality is reported. Since conventional quantitative analysis of the absorbed dose cannot conclusively explain the experimental observations on photon-energy-dependent radiation damage, a significant contribution of photo- and secondary electrons to soft matter damage for photon energies above the investigated absorption edge is proposed.


Asunto(s)
Ojo Compuesto de los Artrópodos/efectos de la radiación , Lesiones Oculares/etiología , Mariposas Nocturnas , Microtomografía por Rayos X/métodos , Animales , Ojo Compuesto de los Artrópodos/ultraestructura , Medios de Contraste/farmacología , Aumento de la Imagen/instrumentación , Aumento de la Imagen/métodos , Microscopía Electrónica de Transmisión , Dosis de Radiación , Relación Señal-Ruido , Coloración y Etiquetado , Microtomografía por Rayos X/instrumentación
13.
Opt Express ; 22(19): 23628-39, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25321829

RESUMEN

An algorithm is presented for the calculation of the Kramers-Kronig transform of a spectrum via a piecewise Laurent polynomial method. This algorithm is demonstrated to be highly accurate, while also being computationally efficient. The algorithm places no requirements on data point spacing and is capable of integrating across the full spectrum (i.e. from zero to infinity). Further, we present a computer application designed to aid in calculating the Kramers-Kronig transform on near-edge experimental X-ray absorption spectra (extended with atomic scattering factor data) in order to produce the dispersive part of the X-ray refractive index, including near-edge features.


Asunto(s)
Algoritmos , Simulación por Computador , Refractometría/métodos , Rayos X
14.
Electrophoresis ; 35(2-3): 271-81, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23893703

RESUMEN

SU-8-based photonic-microfluidic integrated devices with on-chip beam shaping and collection capabilities were demonstrated in a scattering detection and counting application. Through the proper deployment of the tailored beam geometries via the on-chip excitation optics, excellent CV values were measured for 1, 2, and 5 µm blank beads, 16.4, 11.0, and 12.5%, respectively, coupled with a simple free-space optical detection scheme. The performance of these devices was found dependent on the combination of on-chip, lens-shaped beam geometry and bead size. While very low CVs were obtained when the combination was ideal, a nonideal combination could still result in acceptable CVs for flow cytometry; the reliability was confirmed via devices being able to resolve separate populations of 2.0 and 5.0 µm beads from their mixture with low CV values of 15.9 and 18.5%, respectively. On-chip collection using integrated on-chip optical waveguides was shown to be very reliable in comparison with a free-space collection scheme, yielding a coincident rate of 94.2%. A CV as low as 19.2% was obtained from the on-chip excitation and collection of 5 µm beads when the on-chip lens-shaped beam had a 6.0-µm beam waist.


Asunto(s)
Conductividad Eléctrica , Técnicas Analíticas Microfluídicas/instrumentación , Óptica y Fotónica/instrumentación , Diseño de Equipo , Microesferas , Reproducibilidad de los Resultados
15.
Phys Chem Chem Phys ; 16(17): 7741-8, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24638262

RESUMEN

Fourier transform infrared (FTIR) and scanning transmission X-ray microscopy (STXM) spectroscopic imaging techniques are introduced to determine the structure of protein-based polymer blends, using the silk fibroin/polyethylene oxide (SF/PEO) blend as a model material. We demonstrate that FTIR and STXM imaging techniques provide complementary chemical sensitivities, resolution ranges and sample thickness requirements that can enable a greater understanding of SF/PEO blend films. From the FTIR images, we find that SF shows random coil and/or helical conformation in the SF-rich domains, and ß-sheet conformation in the PEO-rich matrix. In the meantime, the SF content in SF-rich domains is 74 ± 4%, and 38 ± 6% in the PEO-rich matrix from the STXM images. These findings support and give further evidence to the conclusions of the previous studies on SF/PEO blends in the literature. Our results strongly suggest that FTIR and STXM imaging techniques are two promising complementary approaches for the study of phase behaviour and molecular conformation in protein-based polymer blend materials.


Asunto(s)
Bombyx/química , Fibroínas/química , Polietilenglicoles/química , Animales , Microanálisis por Sonda Electrónica , Transición de Fase , Espectroscopía Infrarroja por Transformada de Fourier
16.
Brain Pathol ; : e13288, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982662

RESUMEN

Abnormal alpha-synuclein (αSyn) and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim to visualize αSyn inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo. The fluorescent pyrimidoindole derivative THK-565 probe was characterized by means of recombinant fibrils and brains from 10- to 11-month-old M83 mice. Concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging were subsequently performed in vivo. Structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 T as well as scanning transmission x-ray microscopy (STXM) were performed to characterize the iron deposits in the perfused brains. Immunofluorescence and Prussian blue staining were further performed on brain slices to validate the detection of αSyn inclusions and iron deposition. THK-565 showed increased fluorescence upon binding to recombinant αSyn fibrils and αSyn inclusions in post-mortem brain slices from patients with PD and M83 mice. Administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 min post-intravenous injection by wide-field fluorescence compared to nontransgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe3+ form, as evinced by the STXM results. In conclusion, we demonstrated in vivo mapping of αSyn by means of noninvasive epifluorescence and vMSOT imaging and validated the results by targeting the THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo.

18.
Microplast nanoplast ; 3(1): 18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547699

RESUMEN

Once emitted into the environment, macro- (MaP), micro- (MP) and nanoplastics (NP) are exposed to environmental weathering. Yet, the effects of biogeochemical weathering factors occurring in the soil environment are unknown. As the transport, fate, and toxicity of MP and NP depend directly on their surface properties, it is crucial to characterize their transformation in soils to better predict their impact and interactions in this environment. Here, we used scanning transmission x-ray micro spectroscopy to characterize depth profiles of the surface alteration of environmental plastic debris retrieved from soil samples. Controlled weathering experiments in soil and with UV radiation were also performed to investigate the individual effect of these weathering factors on polymer surface alteration. The results revealed a weathered surface on a depth varying between 1 µm and 100 nm in PS, PET and PP environmental plastic fragments naturally weathered in soil. Moreover, the initial step of surface fragmentation was observed on a PS fragment, providing an insight on the factors and processes leading to the release of MP and NP in soils. The comparison of environmental, soil incubated (for 1 year) and UV weathered samples showed that the treatments led to different surface chemical modifications. While the environmental samples showed evidence of alteration involving oxidation processes, the UV weathered samples did not reveal oxidation signs at the surface but only decrease in peak intensities (indicating decrease of the number of chemical C bonds). After a one-year incubation of samples in soil no clear aging effects were observed, indicating that the aging of polymers can be slow in soils. Supplementary Information: The online version contains supplementary material available at 10.1186/s43591-023-00066-2.

19.
Nanoscale ; 15(45): 18500-18510, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37942933

RESUMEN

The direct integration of 1D magnetic nanostructures into electronic circuits is crucial for realizing their great potential as components in magnetic storage, logical devices, and spintronic applications. Here, we present a novel template-free technique for producing magnetic nanochains and nanowires using directed self-assembly of gas-phase-generated metallic nanoparticles. The 1D nanostructures can be self-assembled along most substrate surfaces and can be freely suspended over micrometer distances, allowing for direct incorporation into different device architectures. The latter is demonstrated by a one-step integration of nanochains onto a pre-patterned Si chip and the fabrication of devices exhibiting magnetoresistance. Moreover, fusing the nanochains into nanowires by post-annealing significantly enhances the magnetic properties, with a 35% increase in the coercivity. Using magnetometry, X-ray microscopy, and micromagnetic simulations, we demonstrate how variations in the orientation of the magnetocrystalline anisotropy and the presence of larger multi-domain particles along the nanochains play a key role in the domain formation and magnetization reversal. Furthermore, it is shown that the increased coercivity in the nanowires can be attributed to the formation of a uniform magnetocrystalline anisotropy along the wires and the onset of exchange interactions.

20.
Nanoscale ; 15(13): 6126-6142, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36939532

RESUMEN

We report, for the first time, sub-4 nm mapping of donor : acceptor nanoparticle composition in eco-friendly colloidal dispersions for organic electronics. Low energy scanning transmission electron microscopy (STEM) energy dispersive X-ray spectroscopy (EDX) mapping has revealed the internal morphology of organic semiconductor donor : acceptor blend nanoparticles at the sub-4 nm level. A unique element was available for utilisation as a fingerprint element to differentiate donor from acceptor material in each blend system. Si was used to map the location of donor polymer PTzBI-Si in PTzBI-Si:N2200 nanoparticles, and S (in addition to N) was used to map donor polymer TQ1 in TQ1:PC71BM nanoparticles. For select material blends, synchrotron-based scanning transmission X-ray microscopy (STXM), was demonstrated to remain as the superior chemical contrast technique for mapping organic donor : acceptor morphology, including for material combinations lacking a unique fingerprint element (e.g. PTQ10:Y6), or systems where the unique element is in a terminal functional group (unsaturated, dangling bonds) and can hence be easily damaged under the electron beam, e.g. F on PTQ10 donor polymer in the PTQ10:IDIC donor : acceptor blend. We provide both qualitative and quantitative compositional mapping of organic semiconductor nanoparticles with STEM EDX, with sub-domains resolved in nanoparticles as small as 30 nm in diameter. The sub-4 nm mapping technology reported here shows great promise for the optimisation of organic semiconductor blends for applications in organic electronics (solar cells and bioelectronics) and photocatalysis, and has further applications in organic core-shell nanomedicines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA