Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
PLoS Pathog ; 20(4): e1012087, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557815

RESUMEN

Prion diseases uniquely manifest in three distinct forms: inherited, sporadic, and infectious. Wild-type prions are responsible for the sporadic and infectious versions, while mutant prions cause inherited variants like fatal familial insomnia (FFI) and familial Creutzfeldt-Jakob disease (fCJD). Although some drugs can prolong prion incubation times up to four-fold in rodent models of infectious prion diseases, no effective treatments for FFI and fCJD have been found. In this study, we evaluated the efficacy of various anti-prion drugs on newly-developed knock-in mouse models for FFI and fCJD. These models express bank vole prion protein (PrP) with the pathogenic D178N and E200K mutations. We applied various drug regimens known to be highly effective against wild-type prions in vivo as well as a brain-penetrant compound that inhibits mutant PrPSc propagation in vitro. None of the regimens tested (Anle138b, IND24, Anle138b + IND24, cellulose ether, and PSCMA) significantly extended disease-free survival or prevented mutant PrPSc accumulation in either knock-in mouse model, despite their ability to induce strain adaptation of mutant prions. Our results show that anti-prion drugs originally developed to treat infectious prion diseases do not necessarily work for inherited prion diseases, and that the recombinant sPMCA is not a reliable platform for identifying compounds that target mutant prions. This work underscores the need to develop therapies and validate screening assays specifically for mutant prions, as well as anti-prion strategies that are not strain-dependent.


Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Animales , Ratones , Priones/metabolismo , Enfermedades por Prión/tratamiento farmacológico , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Síndrome de Creutzfeldt-Jakob/tratamiento farmacológico , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Encéfalo/patología , Arvicolinae/metabolismo
2.
J Neurochem ; 165(2): 230-245, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36511154

RESUMEN

The bank vole (BV) prion protein (PrP) can function as a universal acceptor of prions. However, the molecular details of BVPrP's promiscuity for replicating a diverse range of prion strains remain obscure. To develop a cultured cell paradigm capable of interrogating the unique properties of BVPrP, we generated monoclonal lines of CAD5 cells lacking endogenous PrP but stably expressing either hamster (Ha), mouse (Mo), or BVPrP (M109 or I109 polymorphic variants) and then challenged them with various strains of mouse or hamster prions. Cells expressing BVPrP were susceptible to both mouse and hamster prions, whereas cells expressing MoPrP or HaPrP could only be infected with species-matched prions. Propagation of mouse and hamster prions in cells expressing BVPrP resulted in strain adaptation in several instances, as evidenced by alterations in conformational stability, glycosylation, susceptibility to anti-prion small molecules, and the inability of BVPrP-adapted mouse prion strains to infect cells expressing MoPrP. Interestingly, cells expressing BVPrP containing the G127V prion gene variant, identified in individuals resistant to kuru, were unable to become infected with prions. Moreover, the G127V polymorphic variant impeded the spontaneous aggregation of recombinant BVPrP. These results demonstrate that BVPrP can facilitate cross-species prion replication in cultured cells and that a single amino acid change can override the prion-permissive nature of BVPrP. This cellular paradigm will be useful for dissecting the molecular features of BVPrP that allow it to function as a universal prion acceptor.


Asunto(s)
Enfermedades por Prión , Priones , Cricetinae , Animales , Priones/genética , Priones/metabolismo , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Enfermedades por Prión/genética , Arvicolinae/genética , Arvicolinae/metabolismo , Células Cultivadas
3.
Cell Tissue Res ; 392(1): 63-80, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35581386

RESUMEN

For over three decades, cultured cells have been a useful tool for dissecting the molecular details of prion replication and the identification of candidate therapeutics for prion disease. A major issue limiting the translatability of these studies has been the inability to reliably propagate disease-relevant, non-mouse strains of prions in cells relevant to prion pathogenesis. In recent years, fueled by advances in gene editing technology, it has become possible to propagate prions from hamsters, cervids, and sheep in immortalized cell lines originating from the central nervous system. In particular, the use of CRISPR-Cas9-mediated gene editing to generate versions of prion-permissive cell lines that lack endogenous PrP expression has provided a blank canvas upon which re-expression of PrP leads to species-matched susceptibility to prion infection. When coupled with the ability to propagate prions in cells or organoids derived from stem cells, these next-generation cellular models should provide an ideal paradigm for identifying small molecules and other biological therapeutics capable of interfering with prion replication in animal and human prion disorders. In this review, we summarize recent advances that have widened the spectrum of prion strains that can be propagated in cultured cells and cutting-edge tissue-based models.


Asunto(s)
Ciervos , Enfermedades por Prión , Priones , Cricetinae , Animales , Humanos , Ovinos/genética , Priones/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Células Cultivadas , Línea Celular , Edición Génica , Ciervos/genética , Ciervos/metabolismo
4.
J Biol Chem ; 297(3): 101073, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34390689

RESUMEN

The study of prions and the discovery of candidate therapeutics for prion disease have been facilitated by the ability of prions to replicate in cultured cells. Paradigms in which prion proteins from different species are expressed in cells with low or no expression of endogenous prion protein (PrP) have expanded the range of prion strains that can be propagated. In these systems, cells stably expressing a PrP of interest are typically generated via coexpression of a selectable marker and treatment with an antibiotic. Here, we report the unexpected discovery that the aminoglycoside G418 (Geneticin) interferes with the ability of stably transfected cultured cells to become infected with prions. In G418-resistant lines of N2a or CAD5 cells, the presence of G418 reduced levels of protease-resistant PrP following challenge with the RML or 22L strains of mouse prions. G418 also interfered with the infection of cells expressing hamster PrP with the 263K strain of hamster prions. Interestingly, G418 had minimal to no effect on protease-resistant PrP levels in cells with established prion infection, arguing that G418 selectively interferes with de novo prion infection. As G418 treatment had no discernible effect on cellular PrP levels or its localization, this suggests that G418 may specifically target prion assemblies or processes involved in the earliest stages of prion infection.


Asunto(s)
Gentamicinas/farmacología , Proteínas Priónicas/efectos de los fármacos , Priones/antagonistas & inhibidores , Aminoglicósidos/metabolismo , Aminoglicósidos/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Gentamicinas/metabolismo , Ratones , Proteínas PrPC/efectos de los fármacos , Proteínas PrPC/metabolismo , Proteínas PrPSc/efectos de los fármacos , Proteínas PrPSc/metabolismo , Enfermedades por Prión/prevención & control , Proteínas Priónicas/metabolismo , Priones/metabolismo , Inhibidores de la Síntesis de la Proteína
5.
PLoS Pathog ; 16(9): e1008875, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898162

RESUMEN

Prions are unorthodox pathogens that cause fatal neurodegenerative diseases in humans and other mammals. Prion propagation occurs through the self-templating of the pathogenic conformer PrPSc, onto the cell-expressed conformer, PrPC. Here we study the conversion of PrPC to PrPSc using a recombinant mouse PrPSc conformer (mouse protein-only recPrPSc) as a unique tool that can convert bank vole but not mouse PrPC substrates in vitro. Thus, its templating ability is not dependent on sequence homology with the substrate. In the present study, we used chimeric bank vole/mouse PrPC substrates to systematically determine the domain that allows for conversion by Mo protein-only recPrPSc. Our results show that that either the presence of the bank vole amino acid residues E227 and S230 or the absence of the second N-linked glycan are sufficient to allow PrPC substrates to be converted by Mo protein-only recPrPSc and several native infectious prion strains. We propose that residues 227 and 230 and the second glycan are part of a C-terminal domain that acts as a linchpin for bank vole and mouse prion conversion.


Asunto(s)
Encéfalo/metabolismo , Proteínas PrPC/metabolismo , Proteínas PrPSc/metabolismo , Enfermedades por Prión/metabolismo , Animales , Arvicolinae , Encéfalo/patología , Cricetinae , Mesocricetus , Ratones , Ratones Transgénicos , Proteínas PrPC/genética , Proteínas PrPSc/genética , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Dominios Proteicos
6.
PLoS Pathog ; 15(3): e1007662, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30908557

RESUMEN

The protein-only hypothesis predicts that infectious mammalian prions are composed solely of PrPSc, a misfolded conformer of the normal prion protein, PrPC. However, protein-only PrPSc preparations lack significant levels of prion infectivity, leading to the alternative hypothesis that cofactor molecules are required to form infectious prions. Here, we show that prions with parental strain properties and full specific infectivity can be restored from protein-only PrPSc in vitro. The restoration reaction is rapid, potent, and requires bank vole PrPC substrate, post-translational modifications, and cofactor molecules. To our knowledge, this represents the first report in which the essential properties of an infectious mammalian prion have been restored from pure PrP without adaptation. These findings provide evidence for a unified hypothesis of prion infectivity in which the global structure of protein-only PrPSc accurately stores latent infectious and strain information, but cofactor molecules control a reversible switch that unmasks biological infectivity.


Asunto(s)
Proteínas PrPSc/metabolismo , Proteínas PrPSc/patogenicidad , Priones/metabolismo , Animales , Arvicolinae , Enfermedades Transmisibles , Mamíferos , Proteínas PrPC/metabolismo , Proteínas PrPC/fisiología , Proteínas PrPSc/fisiología , Proteínas Priónicas/metabolismo , Proteínas Priónicas/fisiología , Priones/patogenicidad , Priones/fisiología , Procesamiento Proteico-Postraduccional
7.
Acta Neuropathol ; 142(1): 17-39, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32743745

RESUMEN

Reminiscent of the human prion diseases, there is considerable clinical and pathological variability in Alzheimer's disease, the most common human neurodegenerative condition. As in prion disorders, protein misfolding and aggregation is a hallmark feature of Alzheimer's disease, where the initiating event is thought to be the self-assembly of Aß peptide into aggregates that deposit in the central nervous system. Emerging evidence suggests that Aß, similar to the prion protein, can polymerize into a conformationally diverse spectrum of aggregate strains both in vitro and within the brain. Moreover, certain types of Aß aggregates exhibit key hallmarks of prion strains including divergent biochemical attributes and the ability to induce distinct pathological phenotypes when intracerebrally injected into mouse models. In this review, we discuss the evidence demonstrating that Aß can assemble into distinct strains of aggregates and how such strains may be primary drivers of the phenotypic heterogeneity in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Enfermedad de Alzheimer/psicología , Animales , Humanos , Fenotipo , Enfermedades por Prión , Proteínas Priónicas/genética
8.
Proc Natl Acad Sci U S A ; 115(4): E782-E791, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29311311

RESUMEN

Point mutations in the amyloid-ß (Aß) coding region produce a combination of mutant and WT Aß isoforms that yield unique clinicopathologies in familial Alzheimer's disease (fAD) and cerebral amyloid angiopathy (fCAA) patients. Here, we report a method to investigate the structural variability of amyloid deposits found in fAD, fCAA, and sporadic AD (sAD). Using this approach, we demonstrate that mutant Aß determines WT Aß conformation through prion template-directed misfolding. Using principal component analysis of multiple structure-sensitive fluorescent amyloid-binding dyes, we assessed the conformational variability of Aß deposits in fAD, fCAA, and sAD patients. Comparing many deposits from a given patient with the overall population, we found that intrapatient variability is much lower than interpatient variability for both disease types. In a given brain, we observed one or two structurally distinct forms. When two forms coexist, they segregate between the parenchyma and cerebrovasculature, particularly in fAD patients. Compared with sAD samples, deposits from fAD patients show less intersubject variability, and little overlap exists between fAD and sAD deposits. Finally, we examined whether E22G (Arctic) or E22Q (Dutch) mutants direct the misfolding of WT Aß, leading to fAD-like plaques in vivo. Intracerebrally injecting mutant Aß40 fibrils into transgenic mice expressing only WT Aß induced the deposition of plaques with many biochemical hallmarks of fAD. Thus, mutant Aß40 prions induce a conformation of WT Aß similar to that found in fAD deposits. These findings indicate that diverse AD phenotypes likely arise from one or more initial Aß prion conformations, which kinetically dominate the spread of prions in the brain.


Asunto(s)
Enfermedad de Alzheimer/etiología , Péptidos beta-Amiloides/metabolismo , Conformación Proteica , Pliegue de Proteína , Péptidos beta-Amiloides/genética , Animales , Ratones Transgénicos , Mutación Puntual
9.
J Biol Chem ; 294(13): 4911-4923, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30705093

RESUMEN

Prions are infectious protein aggregates that cause several fatal neurodegenerative diseases. Prion research has been hindered by a lack of cellular paradigms for studying the replication of prions from different species. Although hamster prions have been widely used to study prion replication in animals and within in vitro amplification systems, they have proved challenging to propagate in cultured cells. Because the murine catecholaminergic cell line CAD5 is susceptible to a diverse range of mouse prion strains, we hypothesized that it might also be capable of propagating nonmouse prions. Here, using CRISPR/Cas9-mediated genome engineering, we demonstrate that CAD5 cells lacking endogenous mouse PrP expression (CAD5-PrP-/- cells) can be chronically infected with hamster prions following stable expression of hamster PrP. When exposed to the 263K, HY, or 139H hamster prion strains, these cells stably propagated high levels of protease-resistant PrP. Hamster prion replication required absence of mouse PrP, and hamster PrP inhibited the propagation of mouse prions. Cellular homogenates from 263K-infected cells exhibited prion seeding activity in the RT-QuIC assay and were infectious to naïve cells expressing hamster PrP. Interestingly, murine N2a neuroblastoma cells ablated for endogenous PrP expression were susceptible to mouse prions, but not hamster prions upon expression of cognate PrP, suggesting that CAD5 cells either possess cellular factors that enhance or lack factors that restrict the diversity of prion strains that can be propagated. We conclude that transfected CAD5-PrP-/- cells may be a useful tool for assessing the biology of prion strains and dissecting the mechanism of prion replication.


Asunto(s)
Priones/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Cricetinae , Edición Génica , Ratones , Priones/genética
10.
J Neurochem ; 153(2): 150-172, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31943194

RESUMEN

Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.


Asunto(s)
Técnicas In Vitro/métodos , Enfermedades por Prión , Priones , Animales , Células Cultivadas , Humanos , Priones/metabolismo
11.
Acta Neuropathol ; 135(2): 159-178, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29151170

RESUMEN

The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.


Asunto(s)
Proteínas PrPC/metabolismo , Animales , Humanos , Sistema Nervioso/metabolismo , Proteínas PrPC/genética , Enfermedades por Prión/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(38): E5308-17, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26324905

RESUMEN

Prions are proteins that adopt alternative conformations that become self-propagating; the PrP(Sc) prion causes the rare human disorder Creutzfeldt-Jakob disease (CJD). We report here that multiple system atrophy (MSA) is caused by a different human prion composed of the α-synuclein protein. MSA is a slowly evolving disorder characterized by progressive loss of autonomic nervous system function and often signs of parkinsonism; the neuropathological hallmark of MSA is glial cytoplasmic inclusions consisting of filaments of α-synuclein. To determine whether human α-synuclein forms prions, we examined 14 human brain homogenates for transmission to cultured human embryonic kidney (HEK) cells expressing full-length, mutant human α-synuclein fused to yellow fluorescent protein (α-syn140*A53T-YFP) and TgM83(+/-) mice expressing α-synuclein (A53T). The TgM83(+/-) mice that were hemizygous for the mutant transgene did not develop spontaneous illness; in contrast, the TgM83(+/+) mice that were homozygous developed neurological dysfunction. Brain extracts from 14 MSA cases all transmitted neurodegeneration to TgM83(+/-) mice after incubation periods of ∼120 d, which was accompanied by deposition of α-synuclein within neuronal cell bodies and axons. All of the MSA extracts also induced aggregation of α-syn*A53T-YFP in cultured cells, whereas none of six Parkinson's disease (PD) extracts or a control sample did so. Our findings argue that MSA is caused by a unique strain of α-synuclein prions, which is different from the putative prions causing PD and from those causing spontaneous neurodegeneration in TgM83(+/+) mice. Remarkably, α-synuclein is the first new human prion to be identified, to our knowledge, since the discovery a half century ago that CJD was transmissible.


Asunto(s)
Atrofia de Múltiples Sistemas/metabolismo , Trastornos Parkinsonianos/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Anciano , Animales , Encéfalo/patología , Exones , Femenino , Células HEK293 , Humanos , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Persona de Mediana Edad , Atrofia de Múltiples Sistemas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación , Polimorfismo de Nucleótido Simple , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , alfa-Sinucleína/genética
13.
Proc Natl Acad Sci U S A ; 112(35): E4949-58, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26286986

RESUMEN

Increasingly, evidence argues that many neurodegenerative diseases, including progressive supranuclear palsy (PSP), are caused by prions, which are alternatively folded proteins undergoing self-propagation. In earlier studies, PSP prions were detected by infecting human embryonic kidney (HEK) cells expressing a tau fragment [TauRD(LM)] fused to yellow fluorescent protein (YFP). Here, we report on an improved bioassay using selective precipitation of tau prions from human PSP brain homogenates before infection of the HEK cells. Tau prions were measured by counting the number of cells with TauRD(LM)-YFP aggregates using confocal fluorescence microscopy. In parallel studies, we fused α-synuclein to YFP to bioassay α-synuclein prions in the brains of patients who died of multiple system atrophy (MSA). Previously, MSA prion detection required ∼120 d for transmission into transgenic mice, whereas our cultured cell assay needed only 4 d. Variation in MSA prion levels in four different brain regions from three patients provided evidence for three different MSA prion strains. Attempts to demonstrate α-synuclein prions in brain homogenates from Parkinson's disease patients were unsuccessful, identifying an important biological difference between the two synucleinopathies. Partial purification of tau and α-synuclein prions facilitated measuring the levels of these protein pathogens in human brains. Our studies should facilitate investigations of the pathogenesis of both tau and α-synuclein prion disorders as well as help decipher the basic biology of those prions that attack the CNS.


Asunto(s)
Enfermedades Neurodegenerativas/metabolismo , Priones/metabolismo , alfa-Sinucleína/metabolismo , Animales , Células HEK293 , Humanos , Ratones , Enfermedades Neurodegenerativas/patología
14.
J Virol ; 90(21): 9558-9569, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27440899

RESUMEN

The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrPSc, were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates. IMPORTANCE: Variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE) prions are two of the prion strains most relevant to human health. However, propagating these strains in mice expressing human or bovine prion protein has been difficult because of prolonged incubation periods or inefficient transmission. Here, we show that transgenic mice expressing guinea pig prion protein are fully susceptible to vCJD and BSE prions but not to sporadic CJD prions. Our results suggest that the guinea pig prion protein is a better, more rapid substrate than either bovine or human prion protein for propagating BSE and vCJD prions.


Asunto(s)
Encéfalo/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Encefalopatía Espongiforme Bovina/patología , Proteínas Priónicas/metabolismo , Priones/metabolismo , Animales , Bovinos , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/transmisión , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/transmisión , Cobayas , Humanos , Ratones , Ratones Transgénicos
15.
Proc Natl Acad Sci U S A ; 111(28): 10329-34, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982137

RESUMEN

An increasing number of studies continue to show that the amyloid ß (Aß) peptide adopts an alternative conformation and acquires transmissibility; hence, it becomes a prion. Here, we report on the attributes of two strains of Aß prions formed from synthetic Aß peptides composed of either 40 or 42 residues. Modifying the conditions for Aß polymerization increased both the protease resistance and prion infectivity compared with an earlier study. Approximately 150 d after intracerebral inoculation, both synthetic Aß40 and Aß42 prions produced a sustained rise in the bioluminescence imaging signal in the brains of bigenic Tg(APP23:Gfap-luc) mice, indicative of astrocytic gliosis. Pathological investigations showed that synthetic Aß40 prions produced amyloid plaques containing both Aß40 and Aß42 in the brains of inoculated bigenic mice, whereas synthetic Aß42 prions stimulated the formation of smaller, more numerous plaques composed predominantly of Aß42. Synthetic Aß40 preparations consisted of long straight fibrils; in contrast, the Aß42 fibrils were much shorter. Addition of 3.47 mM (0.1%) SDS to the polymerization reaction produced Aß42 fibrils that were indistinguishable from Aß40 fibrils produced in the absence or presence of SDS. Moreover, the Aß amyloid plaques in the brains of bigenic mice inoculated with Aß42 prions prepared in the presence of SDS were similar to those found in mice that received Aß40 prions. From these results, we conclude that the composition of Aß plaques depends on the conformation of the inoculated Aß polymers, and thus, these inocula represent distinct synthetic Aß prion strains.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Priones , Animales , Humanos , Ratones Transgénicos , Factores de Tiempo
16.
Proc Natl Acad Sci U S A ; 111(28): 10323-8, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982139

RESUMEN

An increasing number of studies argues that self-propagating protein conformations (i.e., prions) feature in the pathogenesis of several common neurodegenerative diseases. Mounting evidence contends that aggregates of the amyloid-ß (Aß) peptide become self-propagating in Alzheimer's disease (AD) patients. An important characteristic of prions is their ability to replicate distinct strains, the biological information for which is enciphered within different conformations of protein aggregates. To investigate whether distinct strains of Aß prions can be discerned in AD patients, we performed transmission studies in susceptible transgenic mice using brain homogenates from sporadic or heritable (Arctic and Swedish) AD cases. Mice inoculated with the Arctic AD sample exhibited a pathology that could be distinguished from mice inoculated with the Swedish or sporadic AD samples, which was judged by differential accumulation of Aß isoforms and the morphology of cerebrovascular Aß deposition. Unlike Swedish AD- or sporadic AD-inoculated animals, Arctic AD-inoculated mice, like Arctic AD patients, displayed a prominent Aß38-containing cerebral amyloid angiopathy. The divergent transmission behavior of the Arctic AD sample compared with the Swedish and sporadic AD samples was maintained during second passage in mice, showing that Aß strains are serially transmissible. We conclude that at least two distinct strains of Aß prions can be discerned in the brains of AD patients and that strain fidelity was preserved on serial passage in mice. Our results provide a potential explanation for the clinical and pathological heterogeneity observed in AD patients.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/metabolismo , Priones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/patología , Humanos , Ratones , Ratones Transgénicos
17.
PLoS Pathog ; 10(4): e1003990, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24699458

RESUMEN

Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.


Asunto(s)
Arvicolinae/metabolismo , Proteínas PrPSc/metabolismo , Animales , Arvicolinae/genética , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Cricetinae , Encefalopatía Espongiforme Bovina/genética , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Cobayas , Humanos , Ratones , Ratones Transgénicos , Proteínas PrPSc/genética , Ovinos
18.
Ann Neurol ; 78(4): 540-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26094969

RESUMEN

OBJECTIVE: Mutations in the gene encoding the prion protein (PrP) are responsible for approximately 10 to 15% of cases of prion disease in humans, including Creutzfeldt-Jakob disease (CJD). Here, we report on the discovery of a previously unreported C-terminal PrP mutation (A224V) in a CJD patient exhibiting a disease similar to the rare VV1 subtype of sporadic (s) CJD and investigate the role of this mutation in prion replication and transmission. METHODS: We generated transgenic (Tg) mice expressing human PrP with the V129 polymorphism and A224V mutation, denoted Tg(HuPrP,V129,A224V) mice, and inoculated them with different subtypes of sCJD prions. RESULTS: Transmission of sCJD VV2 or MV2 prions was accelerated in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice, with incubation periods of ∼110 and ∼210 days, respectively. In contrast, sCJD MM1 prions resulted in longer incubation periods in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice (∼320 vs. ∼210 days). Prion strain fidelity was maintained in Tg(HuPrP,V129,A224V) mice inoculated with sCJD VV2 or MM1 prions, despite the altered replication kinetics. INTERPRETATION: Our results suggest that A224V is a risk factor for prion disease and modulates the transmission behavior of CJD prions in a strain-specific manner, arguing that residues near the C-terminus of PrP are important for controlling the kinetics of prion replication.


Asunto(s)
Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , Mutación/genética , Proteínas PrPSc/genética , Animales , Cricetinae , Femenino , Humanos , Mesocricetus , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/genética , Priones/genética
19.
Acta Neuropathol ; 132(4): 593-610, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27350609

RESUMEN

Attempts to model inherited human prion disorders such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) disease, and fatal familial insomnia (FFI) using genetically modified mice have produced disappointing results. We recently demonstrated that transgenic (Tg) mice expressing wild-type bank vole prion protein (BVPrP) containing isoleucine at polymorphic codon 109 develop a spontaneous neurodegenerative disorder that exhibits many of the hallmarks of prion disease. To determine if mutations causing inherited human prion disease alter this phenotype, we generated Tg mice expressing BVPrP containing the D178N mutation, which causes FFI; the E200K mutation, which causes familial CJD; or an anchorless PrP mutation similar to mutations that cause GSS. Modest expression levels of mutant BVPrP resulted in highly penetrant spontaneous disease in Tg mice, with mean ages of disease onset ranging from ~120 to ~560 days. The brains of spontaneously ill mice exhibited prominent features of prion disease-specific neuropathology that were unique to each mutation and distinct from Tg mice expressing wild-type BVPrP. An ~8-kDa proteinase K-resistant PrP fragment was found in the brains of spontaneously ill Tg mice expressing either wild-type or mutant BVPrP. The spontaneously formed mutant BVPrP prions were transmissible to Tg mice expressing wild-type or mutant BVPrP as well as to Tg mice expressing mouse PrP. Thus, Tg mice expressing mutant BVPrP exhibit many of the hallmarks of heritable prion disorders in humans including spontaneous disease, protease-resistant PrP, and prion infectivity.


Asunto(s)
Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patología , Enfermedad de Gerstmann-Straussler-Scheinker/metabolismo , Proteínas Mutantes/metabolismo , Proteínas PrPSc/metabolismo , Animales , Modelos Animales de Enfermedad , Enfermedad de Gerstmann-Straussler-Scheinker/patología , Ratones Transgénicos , Enfermedades por Prión/metabolismo
20.
Proc Natl Acad Sci U S A ; 110(44): E4160-9, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24128760

RESUMEN

There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt-Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice. However, mice infected with Rocky Mountain Laboratory (RML) prions, a scrapie-derived strain, and treated with IND24 eventually exhibited neurological dysfunction and died. We serially passaged their brain homogenates in mice and cultured cells. We found that the prion strain isolated from IND24-treated mice, designated RML[IND24], emerged during a single passage in treated mice. Although RML prions infect both the N2a and CAD5 cell lines, RML[IND24] prions could only infect CAD5 cells. When passaged in CAD5 cells, the prions remained resistant to high concentrations of IND24. However, one passage of RML[IND24] prions in untreated mice restored susceptibility to IND24 in CAD5 cells. Although IND24 treatment extended the lives of mice propagating different prion strains, including RML, another scrapie-derived prion strain ME7, and chronic wasting disease, it was ineffective in slowing propagation of Creutzfeldt-Jakob disease prions in transgenic mice. Our studies demonstrate that prion strains can acquire resistance upon exposure to IND24 that is lost upon passage in mice in the absence of IND24. These data suggest that monotherapy can select for resistance, thus intermittent therapy with mixtures of antiprion compounds may be required to slow or stop neurodegeneration.


Asunto(s)
Resistencia a Medicamentos/genética , Enfermedades Neurodegenerativas/tratamiento farmacológico , Priones/antagonistas & inhibidores , Tiazoles/farmacología , Animales , Encéfalo/patología , Línea Celular , Cartilla de ADN/genética , Descubrimiento de Drogas , Femenino , Humanos , Immunoblotting , Mediciones Luminiscentes , Ratones , Priones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA