Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1286665, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274498

RESUMEN

Introduction: Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods: The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results: Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion: In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.

2.
Neurol India ; 69(2): 394-396, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33904461

RESUMEN

Double Inversion Recovery (DIR) is a robust sequence designed to suppress fat and water signals using two 180° inversion pulses to produce prominent gray matter contrast with high spatial resolution. It has proven to be more sensitive in delineating white matter signal abnormalities than conventional MR techniques. In our study, the highest image contrast with lesion load was observed using DIR over FLAIR and T2 weighted imaging. DIR is evidently valuable for the detection of demyelinating lesions observed in multiple sclerosis (MS), malignancies, epileptogenic foci, and cortical anomalies. Hence this pictorial review is intended to assess the diagnostic efficacy of DIR modality in clinical Neuro-imaging.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Corteza Cerebral , Sustancia Gris , Humanos , Esclerosis Múltiple/diagnóstico por imagen
3.
Int J Radiat Biol ; 94(6): 532-541, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29659316

RESUMEN

PURPOSE: Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. MATERIALS AND METHODS: Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. RESULTS: Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. CONCLUSIONS: The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.


Asunto(s)
Imagen de Difusión Tensora , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/efectos de la radiación , Cráneo/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Animales , Anisotropía , Difusión , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA