RESUMEN
Biotic homogenization is a process whereby species assemblages become more similar through time. The standard way of identifying the process of biotic homogenization is to look for decreases in spatial beta-diversity. However, using a single assemblage-level metric to assess homogenization can mask important changes in the occupancy patterns of individual species. Here, we analysed changes in the spatial beta-diversity patterns (i.e. biotic heterogenization or homogenization) of British bird assemblages within 30 km × 30 km regions between two periods (1988-1991 and 2008-2011). We partitioned the change in spatial beta-diversity into extirpation and colonization-resultant change (i.e. change in spatial beta-diversity within each region resulting from both extirpation and colonization). We used measures of abiotic change in combination with Bayesian modelling to disentangle the drivers of biotic heterogenization and homogenization. We detected both heterogenization and homogenization across the two time periods and three measures of diversity (taxonomic, phylogenetic, and functional). In addition, both extirpation and colonization contributed to the observed changes, with heterogenization mainly driven by extirpation and homogenization by colonization. These assemblage-level changes were primarily due to shifting occupancy patterns of generalist species. Compared to habitat generalists, habitat specialists had significantly (i) higher average contributions to colonization-resultant change (indicating heterogenization within a region due to colonization) and (ii) lower average contributions to extirpation-resultant change (indicating homogenization from extirpation). Generalists showed the opposite pattern. Increased extirpation-resultant homogenization within regions was associated with increased urban land cover and decreased habitat diversity, precipitation, and temperature. Changes in extirpation-resultant heterogenization and colonization-resultant heterogenization were associated with differences in elevation between regions and changes in temperature and land cover. Many of the 'winners' (i.e. species that increased in occupancy) were species that had benefitted from conservation action (e.g. buzzard (Buteo buteo)). The 'losers' (i.e. those that decreased in occupancy) consisted primarily of previously common species, such as cuckoo (Cuculus canorus). Our results show that focusing purely on changes in spatial beta-diversity over time may obscure important information about how changes in the occupancy patterns of individual species contribute to homogenization and heterogenization.
RESUMEN
Research on island species-area relationships (ISAR) has expanded to incorporate functional (IFDAR) and phylogenetic (IPDAR) diversity. However, relative to the ISAR, we know little about IFDARs and IPDARs, and lack synthetic global analyses of variation in form of these three categories of island diversity-area relationship (IDAR). Here, we undertake the first comparative evaluation of IDARs at the global scale using 51 avian archipelagic data sets representing true and habitat islands. Using null models, we explore how richness-corrected functional and phylogenetic diversity scale with island area. We also provide the largest global assessment of the impacts of species introductions and extinctions on the IDAR. Results show that increasing richness with area is the primary driver of the (non-richness corrected) IPDAR and IFDAR for many data sets. However, for several archipelagos, richness-corrected functional and phylogenetic diversity changes linearly with island area, suggesting that the dominant community assembly processes shift along the island area gradient. We also find that archipelagos with the steepest ISARs exhibit the biggest differences in slope between IDARs, indicating increased functional and phylogenetic redundancy on larger islands in these archipelagos. In several cases introduced species seem to have 're-calibrated' the IDARs such that they resemble the historic period prior to recent extinctions.
Asunto(s)
Biodiversidad , Aves , Animales , Filogenia , Islas , EcosistemaRESUMEN
Humans have been driving a global erosion of species richness for millennia, but the consequences of past extinctions for other dimensions of biodiversity-functional and phylogenetic diversity-are poorly understood. In this work, we show that, since the Late Pleistocene, the extinction of 610 bird species has caused a disproportionate loss of the global avian functional space along with ~3 billion years of unique evolutionary history. For island endemics, proportional losses have been even greater. Projected future extinctions of more than 1000 species over the next two centuries will incur further substantial reductions in functional and phylogenetic diversity. These results highlight the severe consequences of the ongoing biodiversity crisis and the urgent need to identify the ecological functions being lost through extinction.
Asunto(s)
Efectos Antropogénicos , Biodiversidad , Aves , Extinción Biológica , Animales , Humanos , Evolución Biológica , Aves/clasificación , Islas , FilogeniaRESUMEN
Fireworks and other pyrotechnics are acknowledged as sources of disturbance to wildlife, with evidence that many species react adversely to their sight and sound at discharge. However, how firework releases impact wildlife within a city landscape is poorly understood. Here, we explore the effect of fireworks on urban birds using an L-band staring radar (90-degree sector out to a 5 km range) to capture bird activity derived from flight tracks (i.e. 3D visualisation of individual flying birds built from radar detections) within the city of Birmingham, UK. Comparing the tracks between baseline periods with no fireworks and periods where fireworks are commonly discharged using a null model indicated that birds flew at higher elevations during firework periods (standardised effect sizes of 17.11, 26.54 and 5.83, for Diwali, Bonfire Night, and New Year's Eve, respectively). Birds also flew in more significant numbers (standardised effect sizes of 23.41, 7.98 and 7.19 for Diwali, Bonfire Night, and New Year's Eve, respectively). Therefore, bird activity was elevated during firework events at a time of night when many would otherwise be roosting. Such disturbance may have implications for avian biology since large public firework events occur at colder times of the year in the UK when birds have elevated thermoregulatory costs.