Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 137(4): 736-48, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19450519

RESUMEN

During vertebrate embryogenesis, hematopoietic stem cells (HSCs) arise in the aorta-gonads-mesonephros (AGM) region. We report here that blood flow is a conserved regulator of HSC formation. In zebrafish, chemical blood flow modulators regulated HSC development, and silent heart (sih) embryos, lacking a heartbeat and blood circulation, exhibited severely reduced HSCs. Flow-modifying compounds primarily affected HSC induction after the onset of heartbeat; however, nitric oxide (NO) donors regulated HSC number even when treatment occurred before the initiation of circulation, and rescued HSCs in sih mutants. Morpholino knockdown of nos1 (nnos/enos) blocked HSC development, and its requirement was shown to be cell autonomous. In the mouse, Nos3 (eNos) was expressed in HSCs in the AGM. Intrauterine Nos inhibition or embryonic Nos3 deficiency resulted in a reduction of hematopoietic clusters and transplantable murine HSCs. This work links blood flow to AGM hematopoiesis and identifies NO as a conserved downstream regulator of HSC development.


Asunto(s)
Fenómenos Fisiológicos Sanguíneos , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Pez Cebra
2.
Anesth Analg ; 130(1): e1-e4, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30198930

RESUMEN

The understanding of anesthetic side effects on the heart has been hindered by the lack of sophisticated clinical models. Using micropatterned human-induced pluripotent stem cell-derived cardiomyocytes, we obtained cardiac muscle depressant profiles for propofol, etomidate, and our newly identified anesthetic compound KSEB01-S2. Propofol was the strongest depressant among the 3 compounds tested, exhibiting the largest decrease in contraction velocity, depression rate, and beating frequency. Interestingly, KSEB01-S2 behaved similarly to etomidate, suggesting a better cardiac safety profile. Our results provide a proof-of-concept for using human-induced pluripotent stem cell-derived cardiomyocytes as an in vitro platform for future drug design.


Asunto(s)
Anestésicos Intravenosos/toxicidad , Etomidato/toxicidad , Cardiopatías/inducido químicamente , Frecuencia Cardíaca/efectos de los fármacos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Propofol/toxicidad , Adulto , Cardiotoxicidad , Línea Celular , Femenino , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Células Madre Pluripotentes Inducidas/patología , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/patología , Prueba de Estudio Conceptual , Medición de Riesgo , Factores de Tiempo , Adulto Joven
3.
Nature ; 447(7147): 1007-11, 2007 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-17581586

RESUMEN

Haematopoietic stem cell (HSC) homeostasis is tightly controlled by growth factors, signalling molecules and transcription factors. Definitive HSCs derived during embryogenesis in the aorta-gonad-mesonephros region subsequently colonize fetal and adult haematopoietic organs. To identify new modulators of HSC formation and homeostasis, a panel of biologically active compounds was screened for effects on stem cell induction in the zebrafish aorta-gonad-mesonephros region. Here, we show that chemicals that enhance prostaglandin (PG) E2 synthesis increased HSC numbers, and those that block prostaglandin synthesis decreased stem cell numbers. The cyclooxygenases responsible for PGE2 synthesis were required for HSC formation. A stable derivative of PGE2 improved kidney marrow recovery following irradiation injury in the adult zebrafish. In murine embryonic stem cell differentiation assays, PGE2 caused amplification of multipotent progenitors. Furthermore, ex vivo exposure to stabilized PGE2 enhanced spleen colony forming units at day 12 post transplant and increased the frequency of long-term repopulating HSCs present in murine bone marrow after limiting dilution competitive transplantation. The conserved role for PGE2 in the regulation of vertebrate HSC homeostasis indicates that modulation of the prostaglandin pathway may facilitate expansion of HSC number for therapeutic purposes.


Asunto(s)
Dinoprostona/farmacología , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Vertebrados , Animales , Diferenciación Celular/efectos de los fármacos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Dinoprostona/agonistas , Dinoprostona/antagonistas & inhibidores , Dinoprostona/biosíntesis , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Proteínas Proto-Oncogénicas c-myb/genética , Vertebrados/embriología , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
4.
Cell Stem Cell ; 30(4): 396-414.e9, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028405

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.


Asunto(s)
Edición Génica , Miocitos Cardíacos , Humanos , Animales , Porcinos , Miocitos Cardíacos/metabolismo , Línea Celular , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Diferenciación Celular/genética
5.
Nature ; 436(7053): 1035-39, 2005 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-16110529

RESUMEN

Iron is required to produce haem and iron-sulphur (Fe-S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe-S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of grx5 yeast Fe-S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe-S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5' iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe-S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe-S cluster assembly.


Asunto(s)
Glutarredoxinas/deficiencia , Glutarredoxinas/metabolismo , Hemo/biosíntesis , Proteínas Hierro-Azufre/metabolismo , Oxidorreductasas/deficiencia , Oxidorreductasas/metabolismo , Pez Cebra/metabolismo , 5-Aminolevulinato Sintetasa/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Eritrocitos/citología , Eritrocitos/metabolismo , Regulación de la Expresión Génica , Glutarredoxinas/química , Glutarredoxinas/genética , Homeostasis , Hierro/metabolismo , Proteína 1 Reguladora de Hierro/metabolismo , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/genética , Ratones , Datos de Secuencia Molecular , Oxidorreductasas/química , Oxidorreductasas/genética , Elementos de Respuesta/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Pez Cebra/genética
6.
Stem Cell Reports ; 16(10): 2473-2487, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506727

RESUMEN

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.


Asunto(s)
Amiodarona/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Ivabradina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/efectos adversos , Taquicardia/tratamiento farmacológico , Animales , Antiarrítmicos/uso terapéutico , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Humanos , Masculino , Células Madre Pluripotentes/trasplante , Porcinos
7.
PLoS Biol ; 4(8): e260, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16869712

RESUMEN

Mammalian hearts cannot regenerate. In contrast, zebrafish hearts regenerate even when up to 20% of the ventricle is amputated. The mechanism of zebrafish heart regeneration is not understood. To systematically characterize this process at the molecular level, we generated transcriptional profiles of zebrafish cardiac regeneration by microarray analyses. Distinct gene clusters were identified based on temporal expression patterns. Genes coding for wound response/inflammatory factors, secreted molecules, and matrix metalloproteinases are expressed in regenerating heart in sequential patterns. Comparisons of gene expression profiles between heart and fin regeneration revealed a set of regeneration core molecules as well as tissue-specific factors. The expression patterns of several secreted molecules around the wound suggest that they play important roles in heart regeneration. We found that both platelet-derived growth factor-a and -b (pdgf-a and pdgf-b) are upregulated in regenerating zebrafish hearts. PDGF-B homodimers induce DNA synthesis in adult zebrafish cardiomyocytes. In addition, we demonstrate that a chemical inhibitor of PDGF receptor decreases DNA synthesis of cardiomyocytes both in vitro and in vivo during regeneration. Our data indicate that zebrafish heart regeneration is associated with sequentially upregulated wound healing genes and growth factors and suggest that PDGF signaling is required.


Asunto(s)
Corazón/fisiología , Regeneración/genética , Pez Cebra/genética , Pez Cebra/fisiología , Animales , Becaplermina , Proliferación Celular , Perfilación de la Expresión Génica , Genes sis , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Datos de Secuencia Molecular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas c-sis , Transducción de Señal , Regulación hacia Arriba , Proteínas de Pez Cebra/metabolismo
9.
Dev Biol ; 309(2): 180-92, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17678642

RESUMEN

Titin (also called connectin) acts as a scaffold for signaling proteins in muscle and is responsible for establishing and maintaining the structure and elasticity of sarcomeres in striated muscle. Several human muscular dystrophies and cardiomyopathies have previously been linked to mutations in the titin gene. This study reports linkage of the runzel homozygous lethal muscular dystrophy in the zebrafish Danio rerio to a genomic interval containing the titin gene. Analysis of the genomic sequence suggests that zebrafish contain two adjacent titin loci. One titin locus lies within the genetic linkage interval and its expression is significantly reduced in runzel mutants by both immunofluorescence and protein electrophoresis. Morpholino downregulation of this same titin locus in wild-type embryos results in decreased muscle organization and mobility, phenocopying runzel mutants. Additional protein analysis demonstrates that, in wild-type zebrafish, titin isoform sizes are rapidly altered during the development of striated muscle, likely requiring a previously unrecognized need for vertebrate sarcomere remodeling to incorporate developmentally regulated titin isoforms. Decreases of affected titin isoforms in runzel mutants during this time correlate with a progressive loss of sarcomeric organization and suggest that the unaffected titin proteins are capable of sarcomerogenesis but not sarcomere maintenance. In addition, microarray analysis of the ruz transcriptome suggests a novel mechanism of dystrophy pathogenesis, involving mild increases in calpain-3 expression and upregulation of heat shock proteins. These studies should lead to a better understanding of titin's role in normal and diseased muscle.


Asunto(s)
Enfermedades de los Peces/genética , Proteínas Musculares/metabolismo , Distrofia Muscular Animal/genética , Proteínas Quinasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Conectina , Enfermedades de los Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ligamiento Genético , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Distrofia Muscular Animal/metabolismo , Mutación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/genética , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Proteínas de Pez Cebra/genética
10.
Proc Natl Acad Sci U S A ; 104(16): 6608-13, 2007 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-17416673

RESUMEN

The spliceosome cycle consists of assembly, catalysis, and recycling phases. Recycling of postspliceosomal U4 and U6 small nuclear ribonucleoproteins (snRNPs) requires p110/SART3, a general splicing factor. In this article, we report that the zebrafish earl grey (egy) mutation maps in the p110 gene and results in a phenotype characterized by thymus hypoplasia, other organ-specific defects, and death by 7 to 8 days postfertilization. U4/U6 snRNPs were disrupted in egy mutant embryos, demonstrating the importance of p110 for U4/U6 snRNP recycling in vivo. Surprisingly, expression profiling of the egy mutant revealed an extensive network of coordinately up-regulated components of the spliceosome cycle, providing a mechanism compensating for the recycling defect. Together, our data demonstrate that a mutation in a general splicing factor can lead to distinct defects in organ development and cause disease.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Empalmosomas/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Genes Letales , Mutagénesis , Especificidad de Órganos/genética , Fenotipo , Factores de Empalme de ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Timo/anomalías , Pez Cebra/genética , Pez Cebra/metabolismo
11.
Am J Physiol Regul Integr Comp Physiol ; 291(4): R1157-64, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16728467

RESUMEN

Vasoactive intestinal peptide (VIP) is a secretagogue that mediates chloride secretion in intestinal epithelia. We determined the relative potency of VIP and related peptides in the rectal gland of the elasmobranch dogfish shark and cloned and expressed the VIP receptor (sVIP-R) from this species. In the perfused rectal gland, VIP (5 nM) stimulated chloride secretion from 250 +/- 66 to 2,604 +/- 286 microeq x h(-1) x g(-1); the relative potency of peptide agonists was VIP > PHI = GHRH > PACAP > secretin, where PHI is peptide histidine isoleucine amide, GHRH is growth hormone-releasing hormone, and PACAP is pituitary adenylate cylase activating peptide. The cloned sVIP-R from shark rectal gland (SRG) is only 61% identical to the human VIP-R1. It maintains a long, extracellular NH2 terminus with seven cysteine residues, and has three N-glycosylation sites and eight other residues implicated in VIP binding. Two amino acids considered important for peptide binding in mammals are not present in the shark orthologue. When sVIP-R and the CFTR chloride channel were coexpressed in Xenopus oocytes, VIP increased chloride conductance from 11.3 +/- 2 to 127 +/- 34 microS. The agonist affinity for activating chloride conductance by the cloned receptor was VIP > GHRH = PHI > PACAP > secretin, a profile mirroring that in the perfused gland. The receptor differs from previously cloned VIP-Rs in having a low affinity for PACAP. Expression of both sVIP-R and CFTR mRNA was detected by quantitative PCR in shark rectal gland, intestine, and brain. These studies characterize a unique G protein-coupled receptor from the shark rectal gland that is the oldest cloned VIP-R.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Cazón/fisiología , Receptores de Péptido Intestinal Vasoactivo/genética , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Glándula de Sal/fisiología , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Cloruros/metabolismo , Clonación Molecular , Secuencia Conservada , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Endodesoxirribonucleasas/metabolismo , Regulación de la Expresión Génica , Técnicas In Vitro , Masculino , Datos de Secuencia Molecular , Oocitos/fisiología , Técnicas de Placa-Clamp , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Péptido Intestinal Vasoactivo/farmacología , Xenopus laevis
12.
Am J Physiol Cell Physiol ; 290(3): C793-801, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16236827

RESUMEN

The apical membrane is an important site of mercury toxicity in shark rectal gland tubular cells. We compared the effects of mercury and other thiol-reacting agents on shark CFTR (sCFTR) and human CFTR (hCFTR) chloride channels using two-electrode voltage clamping of cRNA microinjected Xenopus laevis oocytes. Chloride conductance was stimulated by perfusing with 10 microM forskolin (FOR) and 1 mM IBMX, and then thio-reactive species were added. In oocytes expressing sCFTR, FOR + IBMX mean stimulated Cl(-) conductance was inhibited 69% by 1 microM mercuric chloride and 78% by 5 microM mercuric chloride (IC(50) of 0.8 microM). Despite comparable stimulation of conductance, hCFTR was insensitive to 1 microM HgCl(2) and maximum inhibition was 15% at the highest concentration used (5 microM). Subsequent exposure to glutathione (GSH) did not reverse the inhibition of sCFTR by mercury, but dithiothreitol (DTT) completely reversed this inhibition. Zinc (50-200 microM) also reversibly inhibited sCFTR (40-75%) but did not significantly inhibit hCFTR. Similar inhibition of sCFTR but not hCFTR was observed with an organic mercurial, p-chloromercuriphenylsulfonic acid (pCMBS). The first membrane spanning domain (MSD1) of sCFTR contains two unique cysteines, C102 and C303. A chimeric construct replacing MSD1 of hCFTR with the corresponding sequence of sCFTR was highly sensitive to mercury. Site-specific mutations introducing the first but not the second shark unique cysteine in hCFTR MSD1 resulted in full sensitivity to mercury. These experiments demonstrate a profound difference in the sensitivity of shark vs. human CFTR to inhibition by three thiol-reactive substances, an effect that involves C102 in the shark orthologue.


Asunto(s)
Cisteína/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/antagonistas & inhibidores , Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Cloruro de Mercurio/farmacología , Tiburones , Acetato de Zinc/farmacología , 4-Cloromercuribencenosulfonato , Animales , Membrana Celular , Cisteína/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Conductividad Eléctrica , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Oocitos , Especificidad de la Especie , Xenopus laevis
13.
Blood ; 106(2): 521-30, 2005 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-15827125

RESUMEN

Hematopoiesis involves the production of stem cells, followed by the orchestrated differentiation of the blood lineages. Genetic screens in zebrafish have identified mutants with defects that disrupt specific stages of hematopoiesis and vasculogenesis, including the cloche, spadetail (tbx16), moonshine (tif1g), bloodless, and vlad tepes (gata1) mutants. To better characterize the blood program, gene expression profiling was carried out in these mutants and in scl-morphants (scl(mo)). Distinct gene clusters were demarcated by stage-specific and mutant-specific gene regulation. These were found to correlate with the transcriptional program of hematopoietic progenitor cells, as well as of the erythroid, myeloid, and vascular lineages. Among these, several novel hematopoietic and vascular genes were detected, for instance, the erythroid transcription factors znfl2 and ncoa4. A specific regulation was found for myeloid genes, as they were more strongly expressed in vlt mutants compared with other erythroid mutants. A unique gene expression pattern of up-regulated isoprenoid synthesis genes was found in cloche and scl(mo), possibly in migrating cells. In conjunction with the high conservation of vertebrate hematopoiesis, the comparison of transcriptional profiles in zebrafish blood mutants represents a versatile and powerful tool to elucidate the genetic regulation of blood and blood vessel development.


Asunto(s)
Hematopoyesis/genética , Mutación , Pez Cebra/embriología , Pez Cebra/genética , Animales , Vasos Sanguíneos/embriología , Eritropoyesis/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Familia de Multigenes , Mielopoyesis/genética , Fenotipo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA