Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(34): e2210924120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579147

RESUMEN

The origin and early evolution of life is generally studied under two different paradigms: bottom up and top down. Prebiotic chemistry and early Earth geochemistry allow researchers to explore possible origin of life scenarios. But for these "bottom-up" approaches, even successful experiments only amount to a proof of principle. On the other hand, "top-down" research on early evolutionary history is able to provide a historical account about ancient organisms, but is unable to investigate stages that occurred during and just after the origin of life. Here, we consider ancient electron transport chains (ETCs) as a potential bridge between early evolutionary history and a protocellular stage that preceded it. Current phylogenetic evidence suggests that ancestors of several extant ETC components were present at least as late as the last universal common ancestor of life. In addition, recent experiments have shown that some aspects of modern ETCs can be replicated by minerals, protocells, or organic cofactors in the absence of biological proteins. Here, we discuss the diversity of ETCs and other forms of chemiosmotic energy conservation, describe current work on the early evolution of membrane bioenergetics, and advocate for several lines of research to enhance this understanding by pairing top-down and bottom-up approaches.


Asunto(s)
Fenómenos Bioquímicos , Filogenia , Transporte de Electrón , Proteínas/química , Metabolismo Energético , Origen de la Vida , Evolución Biológica , Evolución Molecular
2.
Proc Natl Acad Sci U S A ; 117(34): 20662-20671, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32753383

RESUMEN

The endangered whale shark (Rhincodon typus) is the largest fish on Earth and a long-lived member of the ancient Elasmobranchii clade. To characterize the relationship between genome features and biological traits, we sequenced and assembled the genome of the whale shark and compared its genomic and physiological features to those of 83 animals and yeast. We examined the scaling relationships between body size, temperature, metabolic rates, and genomic features and found both general correlations across the animal kingdom and features specific to the whale shark genome. Among animals, increased lifespan is positively correlated to body size and metabolic rate. Several genomic traits also significantly correlated with body size, including intron and gene length. Our large-scale comparative genomic analysis uncovered general features of metazoan genome architecture: Guanine and cytosine (GC) content and codon adaptation index are negatively correlated, and neural connectivity genes are longer than average genes in most genomes. Focusing on the whale shark genome, we identified multiple features that significantly correlate with lifespan. Among these were very long gene length, due to introns being highly enriched in repetitive elements such as CR1-like long interspersed nuclear elements, and considerably longer neural genes of several types, including connectivity, activity, and neurodegeneration genes. The whale shark genome also has the second slowest evolutionary rate observed in vertebrates to date. Our comparative genomics approach uncovered multiple genetic features associated with body size, metabolic rate, and lifespan and showed that the whale shark is a promising model for studies of neural architecture and lifespan.


Asunto(s)
Adaptación Fisiológica/genética , Tamaño Corporal/fisiología , Tiburones/genética , Animales , Secuencia de Bases/genética , Tamaño Corporal/genética , Genoma/genética , Genómica/métodos , Longevidad/genética , Tiburones/metabolismo , Temperatura
3.
J Hepatol ; 77(2): 525-538, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35259469

RESUMEN

There have been unprecedented advances in the identification of new treatment targets for chronic hepatitis B that are being developed with the goal of achieving functional cure in patients who would otherwise require lifelong nucleoside analogue treatment. Many of the new investigational therapies either directly target the immune system or are anticipated to impact immunity indirectly through modulation of the viral lifecycle and antigen production. While new viral biomarkers (HBV RNA, HBcAg, small, middle, large HBs isoforms) are proceeding through validation steps in clinical studies, immunological biomarkers are non-existent outside of clinical assays for antibodies to HBs, HBc and HBe. To develop clinically applicable immunological biomarkers to measure mechanisms of action, inform logical combination strategies, and guide clinical management for use and discontinuation of immune-targeting drugs, immune assays must be incorporated into phase I/II clinical trials. This paper will discuss the importance of sample collection, the assays available for immunological analyses, their advantages/disadvantages and suggestions for their implementation in clinical trials. Careful consideration must be given to ensure appropriate immunological studies are included as a primary component of the trial with deeper immunological analysis provided by ancillary studies. Standardising immunological assays and data obtained from clinical trials will identify biomarkers that can be deployed in the clinic, independently of specialised immunology laboratories.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Biomarcadores , ADN Viral/genética , Anticuerpos contra la Hepatitis B , Antígenos del Núcleo de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B/genética , Humanos
4.
Biochem Genet ; 60(6): 2299-2312, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35334059

RESUMEN

Viruses are the most common and abundant organisms in the marine environment. To better understand how cetaceans have adapted to this virus-rich environment, we compared cetacean virus-responsive genes to those from terrestrial mammals. We identified virus-responsive gene sequences in seven species of cetaceans, which we compared with orthologous sequences in seven terrestrial mammals. As a result of evolution analysis using the branch model and the branch-site model, 21 genes were selected using at least one model. IFN-ε, an antiviral cytokine expressed at mucous membranes, and its receptor IFNAR1 contain cetacean-specific amino acid substitutions that might change the interaction between the two proteins and lead to regulation of the immune system against viruses. Cetacean-specific amino acid substitutions in IL-6, IL-27, and the signal transducer and activator of transcription (STAT)1 are also predicted to alter the mucosal immune response of cetaceans. Since mucosal membranes are the first line of defense against the external environment and are involved in immune tolerance, our analysis of cetacean virus-responsive genes suggests that genes with cetacean-specific mutations in mucosal immunity-related genes play an important role in the protection and/or regulation of immune responses against viruses.


Asunto(s)
Cetáceos , Inmunidad Mucosa , Animales , Inmunidad Mucosa/genética , Filogenia , Cetáceos/genética , Mamíferos , Adaptación Fisiológica
5.
Dev Biol ; 464(1): 71-87, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32320685

RESUMEN

Animal development and homeostasis depend on precise temporal and spatial intercellular signaling. Components shared between signaling pathways, generally thought to decrease specificity, paradoxically can also provide a solution to pathway coordination. Here we show that the Bone Morphogenetic Protein (BMP) and Wnt signaling pathways share Apcdd1 as a common inhibitor and that Apcdd1 is a taxon-restricted gene with novel domains and signaling functions. Previously, we showed that Apcdd1 inhibits Wnt signaling (Shimomura et al., 2010), here we find that Apcdd1 potently inhibits BMP signaling in body axis formation and neural differentiation in chicken, frog, zebrafish. Furthermore, we find that Apcdd1 has an evolutionarily novel protein domain. Our results from experiments and modeling suggest that Apcdd1 may coordinate the outputs of two signaling pathways that are central to animal development and human disease.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/embriología , Glicoproteínas de Membrana/metabolismo , Vía de Señalización Wnt , Proteínas de Xenopus/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Glicoproteínas de Membrana/genética , Dominios Proteicos , Proteínas de Xenopus/genética , Xenopus laevis
6.
Proc Natl Acad Sci U S A ; 115(23): E5298-E5306, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784819

RESUMEN

Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , Biblioteca de Péptidos , Ingeniería de Proteínas/métodos , Proteínas/síntesis química , Aminoácidos , Citometría de Flujo/métodos , Humanos , Microesferas , Unión Proteica , Proteínas/genética , Espectrometría de Masas en Tándem/métodos
7.
Langmuir ; 36(21): 5793-5801, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32421344

RESUMEN

Understanding the structure and behavior of chemical gardens is of interest for materials science, for understanding organic-mineral interactions, and for simulating geological mineral structures in hydrothermal systems on Earth and other worlds. Herein, we explored the effects of amino acids on inorganic chemical garden precipitate systems of iron chloride and sodium silicate to determine if/how the addition of organics can affect self-assembling morphologies or crystal growth. Amino acids affect chemical garden growth and morphology at the macro-scale and at the nanoscale. In this reaction system, the concentration of amino acid had a greater impact than the amino acid side chain, and increasing concentrations of organics caused structures to have smoother exteriors as amino acids accumulated on the outside surface. These results provide an example of how organic compounds can become incorporated into and influence the growth of inorganic self-organizing precipitates in far-from-equilibrium systems. Additionally, sample handing methods were developed to successfully image these delicate structures.

8.
BMC Biol ; 17(1): 28, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30925871

RESUMEN

BACKGROUND: Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS: We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS: Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.


Asunto(s)
Evolución Molecular , Genoma/fisiología , Conducta Predatoria , Escifozoos/fisiología , Animales , Evolución Biológica , Filogenia , Escifozoos/genética
9.
J Nurs Care Qual ; 29(2): 141-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24316667

RESUMEN

An interdisciplinary clinical improvement workgroup was formed at this academic medical center with the goal of reducing catheter-associated urinary tract infections (CAUTIs). In 2011, the CAUTI rate was noted to be 4.7 CAUTIs per 1000 catheter days. Rounding by 2 lead clinical nurse specialists revealed deficiencies in current practice, which were addressed with multifaceted strategies, including evidence-based indwelling urinary catheter and bladder management protocols, education of staff, reporting of data, and utilization of an icon in the electronic health record (EHR). After the implementation of these strategies, the CAUTI rate decreased and was noted to be 2.4 in February 2013. In addition to this, there was a downward trend line for catheter days.


Asunto(s)
Infecciones Relacionadas con Catéteres/prevención & control , Catéteres de Permanencia/efectos adversos , Infección Hospitalaria/prevención & control , Control de Infecciones/métodos , Mejoramiento de la Calidad , Cateterismo Urinario/efectos adversos , Infecciones Urinarias/prevención & control , Centros Médicos Académicos , Registros Electrónicos de Salud , Humanos , Innovación Organizacional , Grupo de Atención al Paciente , Desarrollo de Programa , Factores de Riesgo , Wisconsin
10.
Astrobiology ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38768415

RESUMEN

Pigments serve a multitude of functions in biology including light harvesting for photosynthesis, radiation protection, membrane support, and defense. The ubiquity of pigments-especially within extremophiles found in high-radiation, high-salinity, and dry environments-and their detectability via mission-ready techniques have elevated these molecules as promising targets in the search for evidence of life elsewhere. Moreover, the detection of pigments has been proposed as a "smoking gun" for extraterrestrial life as it has been suggested that these molecules cannot be generated abiotically. However, while pigments may hold promise as a biosignature, current understanding of their possible prebiotic origins remains understudied and uncertain. Better understanding of the abiotic synthesis of pigments is critical for evaluating the biogenicity of any pigment detected during missions, including by the Mars Perseverance rover or from returned samples. Compounding this uncertainty is the broad definition of pigment as it includes any compound capable of absorbing visible light and by itself does not specify a particular chemical motif. While not experimentally verified, there are promising prebiotic routes for generating pigments including hemes, chlorophylls, and carotenoids. Herein, we review the biochemistry of pigments, the inherent assumptions made when searching for these molecules in the field, their abiotic synthesis in industry and prebiotic reactions, prebiotically relevant molecules that can mimic their spectral signatures, and implications/recommendations for future work.

11.
Brain Struct Funct ; 229(2): 273-283, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37812278

RESUMEN

The paraventricular nucleus of the hypothalamus (PVN) is uniquely capable of proximal control over autonomic and neuroendocrine stress responses, and the bed nucleus of the stria terminalis (BNST) directly modulates PVN function, as well as playing an important role in stress control itself. The dorsal BNST (dBNST) is predominantly preautonomic, while the ventral BNST (vBNST) is predominantly viscerosensory, receiving dense noradrenergic signaling. Distinguishing the dBNST and vBNST, along with the PVN, may facilitate our understanding of dynamic interactions among these regions. T1-weighted MPRAGE and high resolution gradient echo (GRE) modalities were acquired at 7T. GRE was coregistered to MPRAGE and segmentations were performed in MRIcroGL based on their Atlas of the Human Brain depictions. The dBNST, vBNST and PVN were manually segmented in 25 participants; 10 images were rated by 2 raters. These segmentations were normalized and probabilistic atlases for each region were generated in MNI space, now available as resources for future research. We found moderate-high inter-rater reliability [n = 10; Mean Dice (SD); PVN = 0.69 (0.04); dBNST = 0.77 (0.04); vBNST = 0.62 (0.04)]. Probabilistic atlases were reverse normalized into native space for six additional participants that were segmented but not included in the original 25. We also found moderate to moderate-high reliability between the probabilistic atlases and manual segmentations [n = 6; Mean Dice (SD); PVN = 0.55 (0.12); dBNST = 0.60 (0.10); vBNST = 0.47 (0.12 SD)]. By isolating these hypothalamic and BNST subregions using ultra-high field MRI modalities, more specific delineations of these regions can facilitate greater understanding of mechanisms underlying stress-related function and psychopathology.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Núcleos Septales , Humanos , Núcleos Septales/diagnóstico por imagen , Núcleos Septales/fisiología , Reproducibilidad de los Resultados , Transducción de Señal , Imagen por Resonancia Magnética
12.
Astrobiology ; 24(S1): S76-S106, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38498817

RESUMEN

Within the first billion years of Earth's history, the planet transformed from a hot, barren, and inhospitable landscape to an environment conducive to the emergence and persistence of life. This chapter will review the state of knowledge concerning early Earth's (Hadean/Eoarchean) geochemical environment, including the origin and composition of the planet's moon, crust, oceans, atmosphere, and organic content. It will also discuss abiotic geochemical cycling of the CHONPS elements and how these species could have been converted to biologically relevant building blocks, polymers, and chemical networks. Proposed environments for abiogenesis events are also described and evaluated. An understanding of the geochemical processes under which life may have emerged can better inform our assessment of the habitability of other worlds, the potential complexity that abiotic chemistry can achieve (which has implications for putative biosignatures), and the possibility for biochemistries that are vastly different from those on Earth.


Asunto(s)
Planeta Tierra , Planetas , Luna , Atmósfera/química , Océanos y Mares
13.
Pharmacol Ther ; 254: 108592, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38286163

RESUMEN

Hormone therapy (HT) is important and frequently used both regarding replacement therapy (HRT) and gender affirming therapy (GAHT). While HRT has been effective in addressing symptoms related to hormone shortage, several side effects have been described. In this context, there are some studies that show increased cardiovascular risk. However, there are also studies reporting protective aspects of HT. Nevertheless, the exact impact of HT on cardiovascular risk and the underlying mechanisms remain poorly understood. This article explores the relationship between diverse types of HT and cardiovascular risk, focusing on mechanistic insights of the underlying hormones on platelet and leukocyte function as well as on effects on endothelial and adipose tissue cells.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/prevención & control , Factores de Riesgo , Terapia de Reemplazo de Hormonas/efectos adversos , Factores de Riesgo de Enfermedad Cardiaca , Hormonas
14.
Eur J Pharm Sci ; 188: 106501, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37339708

RESUMEN

Gynaecological health is a neglected field of research that includes conditions such as endometriosis, uterine fibroids, infertility, viral and bacterial infections, and cancers. There is a clinical need to develop dosage forms for gynecological diseases that increase efficacy and reduce side effects and explore new materials with properties tailored to the vaginal mucosa and milieu. Here, we developed a 3D printed semisolid vaginal ovule containing pirfenidone, a repurposed drug candidate for endometriosis. Vaginal drug delivery allows direct targeting of the reproductive organs via the first uterine pass effect, but vaginal dosage forms can be challenging to self-administer and retain in situ for periods of more than 1-3 h. We show that a semisoft alginate-based vaginal suppository manufactured using semisolid extrusion additive manufacturing is superior to vaginal ovules made using standard excipients. The 3D-printed ovule showed a controlled release profile of pirfenidone in vitro in standard and biorelevant release tests, as well as better mucoadhesive properties ex vivo. An exposure time of 24 h of pirfenidone to a monolayer culture of an endometriotic epithelial cell line, 12Z, is necessary to reduce the cells' metabolic activity, which demonstrates the need for a sustained release formulation of pirfenidone. 3D printing allowed us to formulate mucoadhesive polymers into a semisolid ovule with controlled release of pirfenidone. This work enables further preclinical and clinical studies into vaginally administered pirfenidone to assess its efficacy as a repurposed endometriosis treatment.


Asunto(s)
Endometriosis , Enfermedades Uterinas , Femenino , Humanos , Endometriosis/tratamiento farmacológico , Óvulo Vegetal , Preparaciones de Acción Retardada , Vagina , Impresión Tridimensional , Liberación de Fármacos , Comprimidos
15.
Life (Basel) ; 13(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37629583

RESUMEN

Enceladus and Europa, icy moons of Saturn and Jupiter, respectively, are believed to be habitable with liquid water oceans and therefore are of interest for future life detection missions and mission concepts. With the limited data from missions to these moons, many studies have sought to better constrain these conditions. With these constraints, researchers have, based on modeling and experimental studies, hypothesized a number of possible metabolisms that could exist on Europa and Enceladus if these worlds host life. The most often hypothesized metabolisms are methanogenesis for Enceladus and methane oxidation/sulfate reduction on Europa. Here, we outline, review, and compare the best estimated conditions of each moon's ocean. We then discuss the hypothetical metabolisms that have been suggested to be present on these moons, based on laboratory studies and Earth analogs. We also detail different detection methods that could be used to detect these hypothetical metabolic reactions and make recommendations for future research and considerations for future missions.

16.
Nucleic Acids Res ; 38(20): 7248-59, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20615901

RESUMEN

The discovery of microRNAs (miRNAs) as a new class of regulators of gene expression has triggered an explosion of research activities, but has left many unanswered questions about how this regulation functions and how it is integrated with other regulatory mechanisms. A number of miRNAs have been found to be present in plasma and other body fluids of humans and mice in surprisingly high concentrations. This observation was unexpected in two respects: first, the fact that these molecules are present at all outside the cell at significant concentrations and second, that these molecules appear to be stable outside of the cell. In light of this it has been suggested that the biological function of miRNAs may also extend outside of the cell and mediate cell-cell communication. We report here that after serum deprivation several human cell lines tested promptly export a substantial amount of miRNAs into the culture medium and the export process is largely energy dependent. The exported miRNAs are found both within and outside of the 16.5 and 120 K centrifugation pellets which contain most of the known cell-derived vesicles, the microvesicles and exosomes. We have identified some candidate proteins involved in this system, and one of these proteins may also play a role in protecting extracellular miRNAs from degradation. Our results point to a hitherto unrecognized and uncharacterized miRNA trafficking system in mammalian cells that is consistent with the cell-cell communication hypothesis.


Asunto(s)
MicroARNs/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Trifosfato/metabolismo , Comunicación Celular , Línea Celular , Medio de Cultivo Libre de Suero , Humanos , MicroARNs/biosíntesis , Nucleofosmina , Estabilidad del ARN , Transporte de ARN
18.
Astrobiology ; 22(4): 481-493, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34898272

RESUMEN

The field of prebiotic chemistry has demonstrated that complex organic chemical systems that exhibit various life-like properties can be produced abiotically in the laboratory. Understanding these chemical systems is important for astrobiology and life detection since we do not know the extent to which prebiotic chemistry might exist or have existed on other worlds. Nor do we know what signatures are diagnostic of an extant or "failed" prebiotic system. On Earth, biology has suppressed most abiotic organic chemistry and overprints geologic records of prebiotic chemistry; therefore, it is difficult to validate whether chemical signatures from future planetary missions are remnant or extant prebiotic systems. The "biosignature threshold" between whether a chemical signature is more likely to be produced by abiotic versus biotic chemistry on a given world could vary significantly, depending on the particular environment, and could change over time, especially if life were to emerge and diversify on that world. To interpret organic signatures detected during a planetary mission, we advocate for (1) gaining a more complete understanding of prebiotic/abiotic chemical possibilities in diverse planetary environments and (2) involving experimental prebiotic samples as analogues when generating comparison libraries for "life-detection" mission instruments.


Asunto(s)
Medio Ambiente Extraterrestre , Planeta Tierra , Exobiología , Planetas
19.
Astrobiology ; 22(1): 25-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34591607

RESUMEN

Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.


Asunto(s)
Hierro , NAD , Hierro/metabolismo , Minerales , NAD/química , NAD/metabolismo , Oxidación-Reducción , Azufre
20.
J Clin Med ; 11(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35628988

RESUMEN

In the recently published review titled "Update on Management of Cardiovascular Diseases in Women", Lucà et al. [...].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA