Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 405(6787): 658-61, 2000 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-10864317

RESUMEN

Electronic correlations govern the dynamics of many phenomena in nature, such as chemical reactions and solid state effects, including superconductivity. Such correlation effects can be most clearly investigated in processes involving single atoms. In particular, the emission of two electrons from an atom--induced by the impact of a single photon, a charged particle or by a short laser pulse--has become the standard process for studies of dynamical electron correlations. Atoms and molecules exposed to laser fields that are comparable in intensity to the nuclear fields have extremely high probabilities for double ionization; this has been attributed to electron-electron interaction. Here we report a strong correlation between the magnitude and the direction of the momentum of two electrons that are emitted from an argon atom, driven by a femtosecond laser pulse (at 38 TW cm(-2)). Increasing the laser intensity causes the momentum correlation between the electrons to be lost, implying that a transition in the laser-atom coupling mechanism takes place.

2.
Opt Express ; 8(7): 368-76, 2001 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-19417829

RESUMEN

We have used a multi-particle imaging technique (COLTRIMS) to observe the double ionization of rare gas atoms by multi-photon absorption of 800 nm (1.5 eV) femto-second laser pulses and by single photon absorption (synchrotron radiation). Both processes are mediated by electron correlation. We discuss similarities and differences in the three-body final state momentum distributions.

3.
Phys Rev Lett ; 84(3): 443-6, 2000 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-11015934

RESUMEN

We have measured the momentum distributions of singly and doubly charged helium ions created in the focus of 220 fs, 800 nm laser pulses at intensities of (2.9-6.6)x10(14) W/cm(2). All ions are emitted strongly aligned along the direction of polarization of the light. We find the typical momenta of the He2+ ions to be 5-10 times larger than those of the He1+ ions and a two peak structure at the highest intensity.

4.
Phys Rev Lett ; 95(24): 243003, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16384373

RESUMEN

Partial photoionization cross sections sigmaN(Egamma) and photoelectron angular distributions betaN(Egamma) were measured for the final ionic states He+ (N > 4) in the region between the N = 8 and N = 13 thresholds (Egamma > 78.155 eV) using the cold target recoil ion momentum spectroscopy technique (COLTRIMS). Comparison of the experimental data with two independent sets of theoretical predictions reveals disagreement for the branching ratios to the various HeN(+) states. The angular distributions just below the double ionization threshold suggest an excitation process for highly excited N states similar to the Wannier mechanism for double ionization.

5.
Phys Rev Lett ; 91(12): 123004, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-14525359

RESUMEN

We have investigated the momentum balance between the two electrons from strong field double ionization of argon at 780 nm and 1.9 x 10(14) W/cm(2). Experimental data show that perpendicular to the laser polarization direction the electrons emerge preferentially in opposite directions. Results of model calculations are found to agree well with the data and reveal a dominant role of the Coulomb correlation between the two outgoing electrons in this kinematical geometry. Differences between the experimental observations and the theoretical results for the ion momentum distribution indicate the importance of the further effects during the three-body breakup.

6.
Phys Rev Lett ; 92(21): 213002, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15245277

RESUMEN

We have investigated the full three-dimensional momentum correlation between the electrons emitted from strong field double ionization of neon when the recollision energy of the first electron is on the order of the ionization potential. The momentum correlation in the direction perpendicular to the laser field depends on the time difference of the two electrons leaving the ion. Our results are consistent with double ionization proceeding through transient double excited states that field ionize.

7.
Phys Rev Lett ; 90(15): 153003, 2003 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-12732032

RESUMEN

We have measured the angular distribution of carbon K-Auger electrons from fixed in space, core-ionized, CO molecules in coincidence with the kinetic energy release of the C+ and O+ fragments. We find a very narrow ejection of Auger electrons in the direction of the oxygen and an oscillatory diffraction pattern. Even for similar electron energies, the angular distribution strongly depends on the symmetry of the final state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA