Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 143(10): 1697-709, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-27013241

RESUMEN

Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.


Asunto(s)
Linaje de la Célula , Inestabilidad Genómica , Planarias/citología , Planarias/genética , Células Madre/citología , Animales , Tipificación del Cuerpo/efectos de la radiación , Muerte Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , División Celular/efectos de la radiación , Linaje de la Célula/efectos de la radiación , Proliferación Celular/efectos de la radiación , ADN/metabolismo , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN , Reparación del ADN por Unión de Extremidades/efectos de la radiación , Regulación hacia Abajo/efectos de la radiación , Rayos gamma , Inestabilidad Genómica/efectos de la radiación , Recombinación Homóloga/efectos de la radiación , Especificidad de Órganos/efectos de la radiación , Planarias/efectos de la radiación , Interferencia de ARN/efectos de la radiación , Recombinasa Rad51/metabolismo , Radiación Ionizante , Proteína de Retinoblastoma/metabolismo , Transducción de Señal/efectos de la radiación , Células Madre/metabolismo , Células Madre/efectos de la radiación , Cicatrización de Heridas/efectos de la radiación
2.
Development ; 139(4): 657-66, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22219354

RESUMEN

Similar to mammalian neural progenitors, Drosophila neuroblasts progressively lose competence to make early-born neurons. In neuroblast 7-1 (NB7-1), Kruppel (Kr) specifies the third-born U3 motoneuron and Kr misexpression induces ectopic U3 cells. However, competence to generate U3 cells is limited to early divisions, when the Eve(+) U motoneurons are produced, and competence is lost when NB7-1 transitions to making interneurons. We have found that Polycomb repressor complexes (PRCs) are necessary and sufficient to restrict competence in NB7-1. PRC loss of function extends the ability of Kr to induce U3 fates and PRC gain of function causes precocious loss of competence to make motoneurons. PRCs also restrict competence to make HB9(+) Islet(+) motoneurons in another neuroblast that undergoes a motoneuron-to-interneuron transition, NB3-1. In contrast to the regulation of motoneuron competence, PRC activity does not affect the production of Eve(+) interneurons by NB3-3, HB9(+) Islet(+) interneurons by NB7-3, or Dbx(+) interneurons by multiple neuroblasts. These findings support a model in which PRCs establish motoneuron-specific competence windows in neuroblasts that transition from motoneuron to interneuron production.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Neuronas Motoras/fisiología , Complejos Multiproteicos/metabolismo , Animales , Linaje de la Célula , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Epigénesis Genética , Interneuronas/citología , Interneuronas/fisiología , Neuronas Motoras/citología , Complejos Multiproteicos/química , Mutación , Complejo Represivo Polycomb 1
3.
J Cell Sci ; 125(Pt 7): 1657-65, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22427692

RESUMEN

Target of Rapamycin (TOR) controls an evolutionarily conserved signaling pathway that modulates cellular growth and division by sensing levels of nutrients, energy and stress. As such, TOR signaling is a crucial component of tissues and organs that translates systemic signals into cellular behavior. The ubiquitous nature of TOR signaling, together with the difficulty of analyzing tissue during cellular turnover and repair, have limited our understanding of how this kinase operates throughout the body. Here, we use the planarian model system to address TOR regulation at the organismal level. The planarian TOR homolog (Smed-TOR) is ubiquitously expressed, including stem cells (neoblasts) and differentiated tissues. Inhibition of TOR with RNA interference severely restricts cell proliferation, allowing the study of neoblasts with restricted proliferative capacity during regeneration and systemic cell turnover. Strikingly, TOR signaling is required for neoblast response to amputation and localized growth (blastema). However, in the absence of TOR signaling, regeneration takes place only within differentiated tissues. In addition, TOR is essential for maintaining the balance between cell division and cell death, and its dysfunction leads to tissue degeneration and lack of organismal growth in the presence of nutrients. Finally, TOR function is likely to be mediated through TOR Complex 1 as its disruption recapitulates signs of the TOR phenotype. Our data reveal novel roles for TOR signaling in controlling adult stem cells at a systemic level and suggest a new paradigm for studying TOR function during physiological turnover and regeneration.


Asunto(s)
Planarias/metabolismo , Transducción de Señal , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Muerte Celular , Diferenciación Celular , División Celular , Proliferación Celular , Planarias/citología , Interferencia de ARN , Células Madre/citología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA