Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(20): e2206971120, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37155909

RESUMEN

Variation in evolutionary rates among species is a defining characteristic of the tree of life and may be an important predictor of species' capacities to adapt to rapid environmental change. It is broadly assumed that generation length is an important determinant of microevolutionary rates, and body size is often used as a proxy for generation length. However, body size has myriad biological correlates that could affect evolutionary rates independently from generation length. We leverage two large, independently collected datasets on recent morphological change in birds (52 migratory species breeding in North America and 77 South American resident species) to test how body size and generation length are related to the rates of contemporary morphological change. Both datasets show that birds have declined in body size and increased in wing length over the past 40 y. We found, in both systems, a consistent pattern wherein smaller species declined proportionally faster in body size and increased proportionally faster in wing length. By contrast, generation length explained less variation in evolutionary rates than did body size. Although the mechanisms warrant further investigation, our study demonstrates that body size is an important predictor of contemporary variation in morphological rates of change. Given the correlations between body size and a breadth of morphological, physiological, and ecological traits predicted to mediate phenotypic responses to environmental change, the relationship between body size and rates of phenotypic change should be considered when testing hypotheses about variation in adaptive responses to climate change.


Asunto(s)
Evolución Biológica , Aves , Animales , Aves/fisiología , Tamaño Corporal/fisiología , Cambio Climático , Adaptación Fisiológica
2.
Ecol Lett ; 25(3): 697-707, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199919

RESUMEN

Increases in biodiversity often lead to greater, and less variable, levels of ecosystem functioning. However, whether species are less likely to go extinct in more diverse ecosystems is unclear. We use comprehensive estimates of avian taxonomic, phylogenetic and functional diversity to characterise the global relationship between multiple dimensions of diversity and extinction risk in birds, focusing on contemporary threat status and latent extinction risk. We find that more diverse assemblages have lower mean IUCN threat status despite being composed of species with attributes that make them more vulnerable to extinction, such as large body size or small range size. Indeed, the reduction in current threat status associated with greater diversity far outweighs the increased risk associated with the accumulation of extinction-prone species in more diverse assemblages. Our results suggest that high diversity reduces extinction risk, and that species conservation targets may therefore best be achieved by maintaining high levels of overall biodiversity in natural ecosystems.


Asunto(s)
Ecosistema , Extinción Biológica , Biodiversidad , Conservación de los Recursos Naturales/métodos , Filogenia
3.
Ecol Lett ; 25(3): 581-597, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35199922

RESUMEN

Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.


Asunto(s)
Aves , Ecosistema , Animales , Biodiversidad , Evolución Biológica , Humanos , Filogenia
4.
Biol Lett ; 18(12): 20220357, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36475424

RESUMEN

As temperatures increase, there is growing evidence that species across much of the tree of life are getting smaller. These climate change-driven size reductions are often interpreted as a temporal analogue of the observation that individuals within a species tend to be smaller in the warmer parts of the species' range. For ectotherms, there has been a broad effort to understand the role of developmental plasticity in temperature-size relationships, but in endotherms, this mechanism has received relatively little attention in favour of selection-based explanations. We review the evidence for a role of developmental plasticity in warming-driven size reductions in birds and highlight insulin-like growth factors as a potential mechanism underlying plastic responses to temperature in endotherms. We find that, as with ectotherms, changes in temperature during development can result in shifts in body size in birds, with size reductions associated with warmer temperatures being the most frequent association. This suggests developmental plasticity may be an important, but largely overlooked, mechanism underlying warming-driven size reductions in endotherms. Plasticity and natural selection have very different constraining forces, thus understanding the mechanism linking temperature and body size in endotherms has broad implications for predicting future impacts of climate change on biodiversity.

5.
BMC Public Health ; 22(1): 1963, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36284292

RESUMEN

BACKGROUND: Low engagement in contact tracing for COVID-19 dramatically reduces its impact, but little is known about how experiences, environments and characteristics of cases and contacts influence engagement. METHODS: We recruited a convenience sample of COVID-19 cases and contacts from the New Haven Health Department's contact tracing program for interviews about their contact tracing experiences. We analyzed transcripts thematically, organized themes using the Capability, Opportunity, Motivation, Behavior (COM-B) model, and identified candidate interventions using the linked Behavior Change Wheel Framework. RESULTS: We interviewed 21 cases and 12 contacts. Many felt physically or psychologically incapable of contact tracing participation due to symptoms or uncertainty about protocols. Environmental factors and social contacts also influenced engagement. Finally, physical symptoms, emotions and low trust in and expectations of public health authorities influenced motivation to participate. CONCLUSION: To improve contact tracing uptake, programs should respond to clients' physical and emotional needs; increase clarity of public communications; address structural and social factors that shape behaviors and opportunities; and establish and maintain trust. We identify multiple potential interventions that may help achieve these goals.


Asunto(s)
COVID-19 , Trazado de Contacto , Humanos , Trazado de Contacto/métodos , Investigación Cualitativa , Salud Pública , Motivación
6.
Am J Public Health ; 111(1): 54-57, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33211580

RESUMEN

Contact tracing was one of the core public health strategies implemented during the first months of the COVID-19 pandemic. In this essay, we describe the rapid establishment of a volunteer contact tracing program in New Haven, Connecticut. We describe successes of the program and challenges that were faced. Going forward, contact tracing efforts can best be supported by increased funding to state and local health departments for a stable workforce and use of evidence-based technological innovations.


Asunto(s)
COVID-19/transmisión , Trazado de Contacto , Salud Pública/economía , Voluntarios/educación , Connecticut , Brotes de Enfermedades/prevención & control , Humanos
7.
J Anim Ecol ; 90(10): 2348-2361, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34151433

RESUMEN

Advancements in phenology and changes in morphology, including body size reductions, are among the most commonly described responses to globally warming temperatures. Although these dynamics are routinely explored independently, the relationships among them and how their interactions facilitate or constrain adaptation to climate change are poorly understood. In migratory species, advancing phenology may impose selection on morphological traits to increase migration speed. Advancing spring phenology might also expose species to cooler temperatures during the breeding season, potentially mitigating the effect of a warming global environment on body size. We use a dataset of birds that died after colliding with buildings in Chicago, IL to test whether changes in migration phenology are related to documented declines in body size and increases in wing length in 52 North American migratory bird species between 1978 and 2016. For each species, we estimate temporal trends in morphology and changes in the timing of migration. We then test for associations between species-specific rates of phenological and morphological changes while assessing the potential effects of migratory distance and breeding latitude. We show that spring migration through Chicago has advanced while the timing of fall migration has broadened as a result of early fall migrants advancing their migrations and late migrants delaying their migrations. Within species, we found that longer wing length was linked to earlier spring migration within years. However, we found no evidence that rates of phenological change across years, or migratory distance and breeding latitude, are predictive of rates of concurrent changes in morphological traits. These findings suggest that biotic responses to climate change are highly multidimensional and the extent to which those responses interact and influence adaptation to climate change requires careful examination.


Asunto(s)
Migración Animal , Aves , Animales , Cambio Climático , Estaciones del Año , Temperatura
8.
Emu ; 121(1-2): 45-54, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35264816

RESUMEN

Because a population's ability to respond to rapid change is dictated by standing genetic variation, we can better predict a population's long-term viability by estimating and then comparing adult census size (N) and effective population size (N e ). However, most studies only measure N or N e , which can be misleading. Using a combination of field and genomic sequence data, we here estimate and compare N and N e in two range-restricted endemics of the Solomon Islands. Two Zosterops White-eye species inhabit the small island of Kolombangara, with a high elevation species endemic to the island (Z. murphyi) and a low elevation species endemic to the Solomon Islands (Z. kulambangrae). Field observations reveal large values of N for both species with Z. kulambangrae numbering at 114,781 ± 32,233 adults, and Z. murphyi numbering at 64,412 ± 15,324 adults. In contrast, genomic analyses reveal that N e was much lower than N, with Z. kulambangrae estimated at 694.5 and Z. murphyi at 796.1 individuals. Further, positive Tajima's D values for both species suggest that they have experienced a demographic contraction, providing a mechanism for low values of N e . Comparison of N and N e suggests that Z. kulambangrae and Z. murphyi are not at immediate threat of extinction but may be at genetic risk. Our results provide important baseline data for long-term monitoring of these island endemics, and argue for measuring both population size estimates to better gauge long-term population viability.

9.
Ecol Lett ; 23(2): 316-325, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31800170

RESUMEN

Increasing temperatures associated with climate change are predicted to cause reductions in body size, a key determinant of animal physiology and ecology. Using a four-decade specimen series of 70 716 individuals of 52 North American migratory bird species, we demonstrate that increasing annual summer temperature over the 40-year period predicts consistent reductions in body size across these diverse taxa. Concurrently, wing length - an index of body shape that impacts numerous aspects of avian ecology and behaviour - has consistently increased across species. Our findings suggest that warming-induced body size reduction is a general response to climate change, and reveal a similarly consistent and unexpected shift in body shape. We hypothesise that increasing wing length represents a compensatory adaptation to maintain migration as reductions in body size have increased the metabolic cost of flight. An improved understanding of warming-induced morphological changes is important for predicting biotic responses to global change.


Asunto(s)
Aves , Calentamiento Global , Migración Animal , Animales , Tamaño Corporal , Cambio Climático , Estaciones del Año , Temperatura
10.
Proc Biol Sci ; 286(1900): 20190364, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30940055

RESUMEN

Understanding interactions between biota and the built environment is increasingly important as human modification of the landscape expands in extent and intensity. For migratory birds, collisions with lighted structures are a major cause of mortality, but the mechanisms behind these collisions are poorly understood. Using 40 years of collision records of passerine birds, we investigated the importance of species' behavioural ecologies in predicting rates of building collisions during nocturnal migration through Chicago, IL and Cleveland, OH, USA. We found that the use of nocturnal flight calls is an important predictor of collision risk in nocturnally migrating passerine birds. Species that produce flight calls during nocturnal migration tended to collide with buildings more than expected given their local abundance, whereas those that do not use such communication collided much less frequently. Our results suggest that a stronger attraction response to artificial light at night in species that produce flight calls may mediate these differences in collision rates. Nocturnal flight calls probably evolved to facilitate collective decision-making during navigation, but this same social behaviour may now exacerbate vulnerability to a widespread anthropogenic disturbance. Our results also suggest that social behaviour during migration may reflect poorly understood differences in navigational mechanisms across lineages of birds.


Asunto(s)
Migración Animal , Aves/fisiología , Mortalidad , Vocalización Animal , Animales , Chicago , Ohio
11.
Proc Natl Acad Sci U S A ; 113(36): 10109-14, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551095

RESUMEN

Biodiversity is widely acknowledged to influence the magnitude and stability of a large array of ecosystem properties, with biodiverse systems thought to be more functionally robust. As such, diverse systems may be safer harbors for vulnerable species, resulting in a positive association between biodiversity and the collective vulnerability of species in an assemblage, or "assemblage vulnerability." We find that, for 35 islands across Northern Melanesia, bird assemblage vulnerability and biodiversity are positively associated. This relationship is highly contingent on Pleistocene connectivity, suggesting that biogeographic history-a factor often overlooked in biodiversity and ecosystem-functioning studies-may influence contemporary ecological processes. In the face of biodiversity loss attributable to anthropogenic drivers, reduced ecosystem functioning may erode the safe harbors of vulnerable assemblages. Paradoxically, these results suggest that biodiverse systems, as more robust systems, may experience greater biodiversity loss over ecological time because they harbor more vulnerable species accumulated over evolutionary time.


Asunto(s)
Biodiversidad , Evolución Biológica , Aves/fisiología , Animales , Conservación de los Recursos Naturales , Ecosistema , Islas , Melanesia , Filogeografía , Dinámica Poblacional/tendencias
12.
Ecology ; 99(5): 1099-1107, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29569236

RESUMEN

Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change.


Asunto(s)
Biodiversidad , Ecosistema , Fenotipo
13.
Proc Biol Sci ; 283(1844)2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27928041

RESUMEN

Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future.


Asunto(s)
Biodiversidad , Ciervos , Herbivoria , Plantas/clasificación , Animales , Bosques , New York , Filogenia
14.
Proc Biol Sci ; 281(1791): 20141257, 2014 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-25100701

RESUMEN

Different models of speciation predict contrasting patterns in the relationship between the dispersal ability of lineages and their diversification rates. This relationship is expected to be negative in isolation-limited models and positive in founder-event models. In addition, the combination of negative and positive effects of dispersal on speciation can result in higher diversification rates at intermediate levels of dispersal ability. Using molecular phylogenies to estimate diversification rates, and wing morphology to estimate dispersal ability, we analysed the influence of dispersal on diversification in the avifauna of Australasian archipelagoes. Contrary to expectations given the fragmented nature of island systems, the relationship between dispersal ability and diversification rate was monotonically negative. While multiple mechanisms could generate this pattern, they all share a phase of range expansion that is decoupled from speciation.


Asunto(s)
Distribución Animal , Biodiversidad , Aves/clasificación , Aves/fisiología , Animales , Australasia , Aves/anatomía & histología , Aves/genética , Especiación Genética , Indonesia , Islas , Filogenia , Alas de Animales/anatomía & histología
15.
Sci Adv ; 10(34): eadp7706, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39167651

RESUMEN

Understanding the extent to which people and wildlife overlap in space and time is critical for the conservation of biodiversity and ecological services. Yet, how global change will reshape the future of human-wildlife overlap has not been assessed. We show that the potential spatial overlap of global human populations and 22,374 terrestrial vertebrate species will increase across ~56.6% and decrease across only ~11.8% of the Earth's terrestrial surface by 2070. Increases are driven primarily by intensification of human population densities, not change in wildlife distributions caused by climate change. The strong spatial heterogeneity of future human-wildlife overlap found in our study makes it clear that local context is imperative to consider, and more targeted area-based land-use planning should be integrated into systematic conservation planning.


Asunto(s)
Animales Salvajes , Cambio Climático , Conservación de los Recursos Naturales , Humanos , Animales , Biodiversidad , Ecosistema , Densidad de Población , Dinámica Poblacional
16.
JAMA Otolaryngol Head Neck Surg ; 149(6): 512-520, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37022679

RESUMEN

Importance: Evidence is lacking from randomized clinical trials of hypoglossal nerve stimulation in obstructive sleep apnea (OSA). Objective: To evaluate the safety and effectiveness of targeted hypoglossal nerve stimulation (THN) of the proximal hypoglossal nerve in patients with OSA. Design, Setting, and Participants: This randomized clinical trial (THN3) was conducted at 20 centers and included 138 patients with moderate to severe OSA with an apnea-hypopnea index (AHI) of 20 to 65 events per hour and body mass index (calculated as weight in kilograms divided by height in meters squared) of 35 or less. The trial was conducted from May 2015 through June 2018. Data were analyzed from January 2022 through January 2023. Intervention: Implant with THN system; randomized 2:1 to activation at month 1 (treatment) or month 4 (control). All received 11 months of THN with follow-up at months 12 and 15, respectively. Main Outcomes and Measures: Primary effectiveness end points comprised AHI and oxygen desaturation index (ODI) responder rates (RRs). Treatment responses at months 4 and 12/15 were defined as a 50% or greater reduction in AHI to 20 or less per hour and an ODI decrease of 25% or greater. Coprimary end points comprised (1) month 4 AHI and ODI RR in the treatment greater than the control group and (2) month 12/15 AHI and ODI RR in the entire cohort exceeding 50%. Secondary end points included sleep apnea severity (AHI and ODI) and patient-reported outcomes (Epworth Sleepiness Scale, Functional Outcomes of Sleep Questionnaire, and EQ-5D visual analog scale). Results: Among 138 participants, the mean (SD) age was 56 (9) years, and 19 (13.8%) were women. Month 4 THN RRs were substantially greater in those in the treatment vs control group (AHI, 52.3% vs 19.6%; ODI, 62.5% vs 41.3%, respectively) with treatment-control standardized mean differences of 0.725 (95% CI, 0.360-1.163) and 0.434 (95% CI, 0.070-0.843) for AHI and ODI RRs, respectively. Months 12/15 RRs were 42.5% and 60.4% for AHI and ODI, respectively. Improvements in AHI, ODI, Epworth Sleepiness Scale, Functional Outcomes of Sleep Questionnaire, and EQ-5D visual analog scale scores were all clinically meaningful (medium to large effect size). Two serious adverse events and 100 nonserious related adverse events were observed from the implant procedure or study protocol. Conclusions and Relevance: This randomized clinical trial found that THN demonstrated improvements in sleep apnea, sleepiness, and quality of life in patients with OSAs over an extended AHI and body mass index range without prior knowledge of pharyngeal collapse pattern. Clinically meaningful improvements in AHI and patient-reported responses compared favorably with those of distal hypoglossal nerve stimulation trials, although clinically meaningful differences were not definitive for ODI. Trial Registration: ClinicalTrials.gov Identifier: NCT02263859.


Asunto(s)
Síndromes de la Apnea del Sueño , Apnea Obstructiva del Sueño , Humanos , Femenino , Persona de Mediana Edad , Masculino , Nervio Hipogloso/fisiopatología , Calidad de Vida , Somnolencia , Apnea Obstructiva del Sueño/terapia , Apnea Obstructiva del Sueño/fisiopatología
17.
Chem Res Toxicol ; 25(12): 2780-7, 2012 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-23106682

RESUMEN

The mutagenic and carcinogenic effects of strong alkylating agents, such as epoxides, have been attributed to their ability to covalently bind DNA in vivo. Most olefins are readily oxidized to reactive epoxides by CytP450. In an effort to develop predictive models for olefin and epoxide mutagenicity, the ring openings of 15 halogen-, alkyl-, alkenyl-, and aryl-substituted epoxides were modeled by quantum-mechanical transition state calculations using MP2/6-31+G(d,p) in the gas phase and in aqueous solution. Free energies of activation (ΔG(‡)) and free energies of reaction (ΔG(rxn)) were computed for each epoxide in the series. This study finds that an aqueous solution ΔG(rxn) threshold value of approximately -14.7 kcal/mol can be used to discern mutagenic/carcinogenic epoxides (ΔG(rxn) < -14.7 kcal/mol) from nonmutagens/noncarcinogens (ΔG(rxn) > -14.7 kcal/mol). The computed reaction thermodynamics are appropriate regardless of ring-opening mechanism in vivo and are thus proposed as an effective in silico screen and design guideline for decreasing potential mutagenicity and carcinogenicity of olefins and their respective epoxides.


Asunto(s)
Alquenos/toxicidad , Carcinógenos/toxicidad , Compuestos Epoxi/toxicidad , Modelos Biológicos , Mutágenos/toxicidad , Alquenos/química , Carcinógenos/química , Compuestos Epoxi/química , Halógenos/química , Mutágenos/química
19.
Health Commun ; 27(2): 158-66, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21823950

RESUMEN

Building on channel complementarity theory and media-system dependency theory, this study explores the impact of conflict-oriented news coverage of health issues on information seeking online. Using Google search data as a measure of behavior, we demonstrate that controversial news coverage of the U.S. Preventive Services Task Force's November 2009 recommendations for changes in breast cancer screening guidelines strongly predicted the volume of same-day online searches for information about mammograms. We also found that this relationship did not exist 1 year prior to the coverage, during which mammography news coverage did not focus on the guideline controversy, suggesting that the controversy frame may have driven search behavior. We discuss the implications of these results for health communication scholars and practitioners.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Internet , Mamografía , Medios de Comunicación de Masas , Tamizaje Masivo , Guías de Práctica Clínica como Asunto , Comités Consultivos , Conflicto Psicológico , Femenino , Humanos , Análisis de los Mínimos Cuadrados , Aceptación de la Atención de Salud , Servicios Preventivos de Salud , Estados Unidos
20.
Ecol Evol ; 11(11): 6471-6479, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141232

RESUMEN

Plant diversity has a positive influence on the number of ecosystem functions maintained simultaneously by a community, or multifunctionality. While the presence of multiple trophic levels beyond plants, or trophic complexity, affects individual functions, the effect of trophic complexity on the diversity-multifunctionality relationship is less well known. To address this issue, we tested whether the independent or simultaneous manipulation of both plant diversity and trophic complexity impacted multifunctionality using a mesocosm experiment from Cedar Creek, Minnesota, USA. Our analyses revealed that neither plant diversity nor trophic complexity had significant effects on single functions, but trophic complexity altered the diversity-multifunctionality relationship in two key ways: It lowered the maximum strength of the diversity-multifunctionality effect, and it shifted the relationship between increasing diversity and multifunctionality from positive to negative at lower function thresholds. Our findings highlight the importance to account for interactions with higher trophic levels, as they can alter the biodiversity effect on multifunctionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA