Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 23(10): 4339-4348, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36054822

RESUMEN

The carboxysome is a protein-based nanoscale organelle in cyanobacteria and many proteobacteria, which encapsulates the key CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase (CA) within a polyhedral protein shell. The intrinsic self-assembly and architectural features of carboxysomes and the semipermeability of the protein shell provide the foundation for the accumulation of CO2 within carboxysomes and enhanced carboxylation. Here, we develop an approach to determine the interior pH conditions and inorganic carbon accumulation within an α-carboxysome shell derived from a chemoautotrophic proteobacterium Halothiobacillus neapolitanus and evaluate the shell permeability. By incorporating a pH reporter, pHluorin2, within empty α-carboxysome shells produced in Escherichia coli, we probe the interior pH of the protein shells with and without CA. Our in vivo and in vitro results demonstrate a lower interior pH of α-carboxysome shells than the cytoplasmic pH and buffer pH, as well as the modulation of the interior pH in response to changes in external environments, indicating the shell permeability to bicarbonate ions and protons. We further determine the saturated HCO3- concentration of 15 mM within α-carboxysome shells and show the CA-mediated increase in the interior CO2 level. Uncovering the interior physiochemical microenvironment of carboxysomes is crucial for understanding the mechanisms underlying carboxysomal shell permeability and enhancement of Rubisco carboxylation within carboxysomes. Such fundamental knowledge may inform reprogramming carboxysomes to improve metabolism and recruit foreign enzymes for enhanced catalytical performance.


Asunto(s)
Anhidrasas Carbónicas , Ribulosa-Bifosfato Carboxilasa , Proteínas Bacterianas/metabolismo , Bicarbonatos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Concentración de Iones de Hidrógeno , Orgánulos/metabolismo , Oxigenasas/metabolismo , Permeabilidad , Protones , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/metabolismo
2.
Sci Rep ; 10(1): 17501, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060756

RESUMEN

Bacterial microcompartments (BMCs) are nanoscale proteinaceous organelles that encapsulate enzymes from the cytoplasm using an icosahedral protein shell that resembles viral capsids. Of particular interest are the carboxysomes (CBs), which sequester the CO2-fixing enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to enhance carbon assimilation. The carboxysome shell serves as a semi-permeable barrier for passage of metabolites in and out of the carboxysome to enhance CO2 fixation. How the protein shell directs influx and efflux of molecules in an effective manner has remained elusive. Here we use molecular dynamics and umbrella sampling calculations to determine the free-energy profiles of the metabolic substrates, bicarbonate, CO2 and ribulose bisphosphate and the product 3-phosphoglycerate associated with their transition through the major carboxysome shell protein CcmK2. We elucidate the electrostatic charge-based permeability and key amino acid residues of CcmK2 functioning in mediating molecular transit through the central pore. Conformational changes of the loops forming the central pore may also be required for transit of specific metabolites. The importance of these in-silico findings is validated experimentally by site-directed mutagenesis of the key CcmK2 residue Serine 39. This study provides insight into the mechanism that mediates molecular transport through the shells of carboxysomes, applicable to other BMCs. It also offers a predictive approach to investigate and manipulate the shell permeability, with the intent of engineering BMC-based metabolic modules for new functions in synthetic biology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/química , Orgánulos/metabolismo , Dióxido de Carbono/química , Simulación por Computador , Citoplasma/metabolismo , Ácidos Glicéricos/química , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Permeabilidad , Dominios Proteicos , Ribulosa-Bifosfato Carboxilasa/química , Electricidad Estática , Synechococcus/metabolismo , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA