Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Transl Med ; 22(1): 320, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555449

RESUMEN

BACKGROUND: Diffuse midline glioma (DMG) is a pediatric tumor with dismal prognosis. Systemic strategies have been unsuccessful and radiotherapy (RT) remains the standard-of-care. A central impediment to treatment is the blood-brain barrier (BBB), which precludes drug delivery to the central nervous system (CNS). Focused ultrasound (FUS) with microbubbles can transiently and non-invasively disrupt the BBB to enhance drug delivery. This study aimed to determine the feasibility of brainstem FUS in combination with clinical doses of RT. We hypothesized that FUS-mediated BBB-opening (BBBO) is safe and feasible with 39 Gy RT. METHODS: To establish a safety timeline, we administered FUS to the brainstem of non-tumor bearing mice concurrent with or adjuvant to RT; our findings were validated in a syngeneic brainstem murine model of DMG receiving repeated sonication concurrent with RT. The brainstems of male B6 (Cg)-Tyrc-2J/J albino mice were intracranially injected with mouse DMG cells (PDGFB+, H3.3K27M, p53-/-). A clinical RT dose of 39 Gy in 13 fractions (39 Gy/13fx) was delivered using the Small Animal Radiation Research Platform (SARRP) or XRAD-320 irradiator. FUS was administered via a 0.5 MHz transducer, with BBBO and tumor volume monitored by magnetic resonance imaging (MRI). RESULTS: FUS-mediated BBBO did not affect cardiorespiratory rate, motor function, or tissue integrity in non-tumor bearing mice receiving RT. Tumor-bearing mice tolerated repeated brainstem BBBO concurrent with RT. 39 Gy/13fx offered local control, though disease progression occurred 3-4 weeks post-RT. CONCLUSION: Repeated FUS-mediated BBBO is safe and feasible concurrent with RT. In our syngeneic DMG murine model, progression occurs, serving as an ideal model for future combination testing with RT and FUS-mediated drug delivery.


Asunto(s)
Barrera Hematoencefálica , Glioma , Humanos , Ratas , Niño , Masculino , Ratones , Animales , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Tronco Encefálico , Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética , Glioma/radioterapia , Microburbujas , Encéfalo
2.
Int J Mol Sci ; 21(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370197

RESUMEN

Cancer pathogenesis results from genetic alteration-induced high or low transcriptional programs, which become highly dependent on regulators of gene expression. However, their role in progressive regulation of non-small-cell lung cancer (NSCLC) and how these dependencies may offer opportunities for novel therapeutic options remain to be understood. Previously, we identified forkhead box F1 (FOXF1) as a reprogramming mediator which leads to stemnesss when mesenchymal stem cells fuse with lung cancer cells, and we now examine its effect on lung cancer through establishing lowly and highly expressing FOXF1 NSCLC engineered cell lines. Higher expression of FOXF1 was enabled in cell lines through lentiviral transduction, and their viability, proliferation, and anchorage-dependent growth was assessed. Flow cytometry and Western blot were used to analyze cellular percentage in cell-cycle phases and levels of cellular cyclins, respectively. In mice, tumorigenic behavior of FOXF1 was investigated. We found that FOXF1 was downregulated in lung cancer tissues and cancer cell lines. Cell proliferation and ability of migration, anchorage-independent growth, and transformation were inhibited in H441-FOXF1H and H1299-FOXF1H, with upregulated tumor suppressor p21 and suppressed cellular cyclins, leading to cell-cycle arrest at the gap 1 (G1) phase. H441-FOXF1H and H1299-FOXF1H injected mice showed reduced tumor size. Conclusively, highly expressing FOXF1 inhibited NSCLC growth via activating tumor suppressor p21 and G1 cell-cycle arrest, thus offering a potentially novel therapeutic strategy for lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Factores de Transcripción Forkhead/genética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Proteínas Supresoras de Tumor/genética , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/terapia , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Factores de Transcripción Forkhead/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Ratones Endogámicos NOD , Ratones SCID , Carga Tumoral/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
Int J Mol Sci ; 19(6)2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-29857489

RESUMEN

NSC 95397, a quinone-based small molecule compound, has been identified as an inhibitor for dual-specificity phosphatases, including mitogen-activated protein kinase phosphatase-1 (MKP-1). MKP-1 is known to inactivate mitogen-activated protein kinases by dephosphorylating both of their threonine and tyrosine residues. Moreover, owing to their participation in tumorigenesis and drug resistance in colon cancer cells, MKP-1 is an attractive therapeutic target for colon cancer treatment. We therefore investigated the inhibitory activity of NSC 95397 against three colon cancer cell lines including SW480, SW620, and DLD-1, and their underlying mechanisms. The results demonstrated that NSC 95397 reduced cell viability and anchorage-independent growth of all the three colon cancer cell lines through inhibited proliferation and induced apoptosis via regulating cell-cycle-related proteins, including p21, cyclin-dependent kinases, and caspases. Besides, by using mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) inhibitor U0126, we provided mechanistic evidence that the antineoplastic effects of NSC 95397 were achieved via inhibiting MKP-1 activity followed by ERK1/2 phosphorylation. Conclusively, our results indicated that NSC 95397 might serve as an effective therapeutic intervention for colon cancer through regulating MKP-1 and ERK1/2 pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Naftoquinonas/farmacología , Biomarcadores , Caspasa 3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/genética , Fosfatasas de Especificidad Dual/metabolismo , Humanos , Ensayo de Tumor de Célula Madre
4.
Int J Radiat Oncol Biol Phys ; 119(4): 1248-1260, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364947

RESUMEN

PURPOSE: Diffuse midline glioma (DMG) is a fatal tumor traditionally treated with radiation therapy (RT) and previously characterized as having a noninflammatory tumor immune microenvironment (TIME). FLASH is a novel RT technique using ultra-high dose rate that is associated with decreased toxicity and effective tumor control. However, the effect of FLASH and conventional (CONV) RT on the DMG TIME has not yet been explored. METHODS AND MATERIALS: Here, we performed single-cell RNA sequencing (scRNA-seq) and flow cytometry on immune cells isolated from an orthotopic syngeneic murine model of brainstem DMG after the use of FLASH (90 Gy/sec) or CONV (2 Gy/min) dose-rate RT and compared to unirradiated tumor (SHAM). RESULTS: At day 4 post-RT, FLASH exerted similar effects as CONV in the predominant microglial (MG) population, including the presence of two activated subtypes. However, at day 10 post-RT, we observed a significant increase in the type 1 interferon α/ß receptor (IFNAR+) in MG in CONV and SHAM compared to FLASH. In the non-resident myeloid clusters of macrophages (MACs) and dendritic cells (DCs), we found increased type 1 interferon (IFN1) pathway enrichment for CONV compared to FLASH and SHAM by scRNA-seq. We observed this trend by flow cytometry at day 4 post-RT in IFNAR+ MACs and DCs, which equalized by day 10 post-RT. DMG control and murine survival were equivalent between RT dose rates. CONCLUSIONS: Our work is the first to map CONV and FLASH immune alterations of the DMG TIME with single-cell resolution. Although DMG tumor control and survival were similar between CONV and FLASH, we found that changes in immune compartments differed over time. Importantly, although both RT modalities increased IFN1, we found that the timing of this response was cell-type and dose-rate dependent. These temporal differences, particularly in the context of tumor control, warrant further study.


Asunto(s)
Glioma , Microglía , Animales , Glioma/radioterapia , Glioma/inmunología , Glioma/patología , Ratones , Microglía/efectos de la radiación , Microglía/inmunología , Microambiente Tumoral/inmunología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Receptor de Interferón alfa y beta/genética , Ratones Endogámicos C57BL , Análisis de la Célula Individual/métodos , Células Dendríticas/inmunología , Células Dendríticas/efectos de la radiación , Macrófagos/inmunología
5.
bioRxiv ; 2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38559080

RESUMEN

Diffuse Midline Gliomas (DMGs) are universally fatal, primarily pediatric malignancies affecting the midline structures of the central nervous system. Despite decades of clinical trials, treatment remains limited to palliative radiation therapy. A major challenge is the coexistence of molecularly distinct malignant cell states with potentially orthogonal drug sensitivities. To address this challenge, we leveraged established network-based methodologies to elucidate Master Regulator (MR) proteins representing mechanistic, non-oncogene dependencies of seven coexisting subpopulations identified by single-cell analysis-whose enrichment in essential genes was validated by pooled CRISPR/Cas9 screens. Perturbational profiles of 372 clinically relevant drugs helped identify those able to invert the activity of subpopulation-specific MRs for follow-up in vivo validation. While individual drugs predicted to target individual subpopulations-including avapritinib, larotrectinib, and ruxolitinib-produced only modest tumor growth reduction in orthotopic models, systemic co-administration induced significant survival extension, making this approach a valuable contribution to the rational design of combination therapy.

6.
Cancer Discov ; 14(9): 1732-1754, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-38767413

RESUMEN

High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.


Asunto(s)
Glioma , Neuronas , Humanos , Glioma/genética , Glioma/patología , Glioma/metabolismo , Ratones , Animales , Neuronas/metabolismo , Neuronas/patología , Línea Celular Tumoral , Niño , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteínas de Unión al ADN
7.
Biomater Sci ; 11(13): 4522-4536, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37158091

RESUMEN

Aging involves tissue and cell potential dysfunction characterized by stem cell senescence and extracellular matrix microenvironment (ECM) alteration. Chondroitin sulfate (CS), found in the ECM of normal cells and tissues, aids in maintaining tissue homeostasis. Here, CS-derived biomaterial (CSDB) from sturgeon is extracted to investigate its antiaging effect in senescence-accelerated mouse prone-8 (SAMP8) mice and elucidate the underlying mechanism of its action. Although CSDB has been widely extracted from different sources and used as a scaffold, hydrogel, or drug carrier for the treatment of various pathological diseases, CSDB has not yet been used as a biomaterial for the amelioration of senescence and aging features. In this study, the extracted sturgeon CSDB showed a low molecular weight and comprised 59% 4-sulfated CS and 23% 6-sulfated CS. In an in vitro study, sturgeon CSDB promoted cell proliferation and reduced oxidative stress to inhibit stem cell senescence. In an ex vivo study, after oral CSDB treatment of SAMP8 mice, the stem cells were extracted to analyze the p16Ink4a and p19Arf gene-related pathways, which were inhibited and then SIRT-1 gene expression was upregulated to reprogram stem cells from a senescence state for retarding aging. In an in vivo study, CSDB also restored the aging-phenotype-related bone mineral density and skin morphology to prolong longevity. Thus, sturgeon CSDB may be useful for prolonging healthy longevity as an anti-aging drug.


Asunto(s)
Antioxidantes , Longevidad , Ratones , Animales , Sulfatos de Condroitina/farmacología , Envejecimiento/genética , Senescencia Celular , Peces/genética , Células Madre , Expresión Génica
8.
ArXiv ; 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36713234

RESUMEN

Focused ultrasound (FUS) can be used to open the blood-brain barrier (BBB), and MRI with contrast agents can detect that opening. However, repeated use of gadolinium-based contrast agents (GBCAs) presents safety concerns to patients. This study is the first to propose the idea of modeling a volume transfer constant (Ktrans) through deep learning to reduce the dosage of contrast agents. The goal of the study is not only to reconstruct artificial intelligence (AI) derived Ktrans images but to also enhance the intensity with low dosage contrast agent T1 weighted MRI scans. We successfully validated this idea through a previous state-of-the-art temporal network algorithm, which focused on extracting time domain features at the voxel level. Then we used a Spatiotemporal Network (ST-Net), composed of a spatiotemporal convolutional neural network (CNN)-based deep learning architecture with the addition of a three-dimensional CNN encoder, to improve the model performance. We tested the ST-Net model on ten datasets of FUS-induced BBB-openings aquired from different sides of the mouse brain. ST-Net successfully detected and enhanced BBB-opening signals without sacrificing spatial domain information. ST-Net was shown to be a promising method of reducing the need of contrast agents for modeling BBB-opening K-trans maps from time-series Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans.

9.
Cancer Discov ; 12(12): 2906-2929, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305747

RESUMEN

Patients with diffuse midline gliomas that are H3K27 altered (DMG) display a dismal prognosis. However, the molecular mechanisms underlying DMG tumorigenesis remain poorly defined. Here we show that SMARCA4, the catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex, is essential for the proliferation, migration, and invasion of DMG cells and tumor growth in patient-derived DMG xenograft models. SMARCA4 colocalizes with SOX10 at gene regulatory elements to control the expression of genes involved in cell growth and the extracellular matrix (ECM). Moreover, SMARCA4 chromatin binding is reduced upon depletion of SOX10 or H3.3K27M, a mutation occurring in about 60% DMG tumors. Furthermore, the SMARCA4 occupancy at enhancers marked by both SOX10 and H3K27 acetylation is reduced the most upon depleting the H3.3K27M mutation. Taken together, our results support a model in which epigenome reprogramming by H3.3K27M creates a dependence on SMARCA4-mediated chromatin remodeling to drive gene expression and the pathogenesis of H3.3K27M DMG. SIGNIFICANCE: DMG is a deadly pediatric glioma currently without effective treatments. We discovered that the chromatin remodeler SMARCA4 is essential for the proliferation of DMG with H3K27M mutation in vitro and in vivo, identifying a potentially novel therapeutic approach to this disease. See related commentary by Beytagh and Weiss, p. 2730. See related article by Panditharatna et al., p. 2880. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
Glioma , Histonas , Animales , Humanos , Niño , Histonas/genética , Histonas/metabolismo , Epigenoma , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Cromatina , Mutación , Células Madre Neoplásicas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , ADN Helicasas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Front Aging Neurosci ; 14: 923673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034139

RESUMEN

While MRI contrast agents such as those based on Gadolinium are needed for high-resolution mapping of brain metabolism, these contrast agents require intravenous administration, and there are rising concerns over their safety and invasiveness. Furthermore, non-contrast MRI scans are more commonly performed than those with contrast agents and are readily available for analysis in public databases such as the Alzheimer's Disease Neuroimaging Initiative (ADNI). In this article, we hypothesize that a deep learning model, trained using quantitative steady-state contrast-enhanced structural MRI datasets, in mice and humans, can generate contrast-equivalent information from a single non-contrast MRI scan. The model was first trained, optimized, and validated in mice, and was then transferred and adapted to humans. We observe that the model can substitute for Gadolinium-based contrast agents in approximating cerebral blood volume, a quantitative representation of brain activity, at sub-millimeter granularity. Furthermore, we validate the use of our deep-learned prediction maps to identify functional abnormalities in the aging brain using locally obtained MRI scans, and in the brain of patients with Alzheimer's disease using publicly available MRI scans from ADNI. Since it is derived from a commonly-acquired MRI protocol, this framework has the potential for broad clinical utility and can also be applied retrospectively to research scans across a host of neurological/functional diseases.

11.
Int J Radiat Oncol Biol Phys ; 110(2): 539-550, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346092

RESUMEN

PURPOSE: Glioblastoma (GBM) is a devastating disease. With the current treatment of surgery followed by chemoradiation, outcomes remain poor, with median survival of only 15 months and a 5-year survival rate of 6.8%. A challenge in treating GBM is the heterogeneous integrity of the blood-brain barrier (BBB), which limits the bioavailability of systemic therapies to the brain. There is a growing interest in enhancing drug delivery by opening the BBB with the use of focused ultrasound (FUS). We hypothesize that an FUS-mediated BBB opening can enhance the delivery of etoposide for a therapeutic benefit in GBM. METHODS AND MATERIALS: A murine glioma cell line (Pdgf+, Pten-/-, P53-/-) was orthotopically injected into B6(Cg)-Tyrc-2J/J mice to establish the syngeneic GBM model for this study. Animals were treated with FUS and microbubbles to open the BBB to enhance the delivery of systemic etoposide. Magnetic resonance (MR) imaging was used to evaluate the BBB opening and tumor progression. Liquid chromatography tandem mass spectrometry was used to measure etoposide concentrations in the intracranial tumors. RESULTS: The murine glioma cell line is sensitive to etoposide in vitro. MR imaging and passive cavitation detection demonstrate the safe and successful BBB opening with FUS. The combined treatment of an FUS-mediated BBB opening and etoposide decreased tumor growth by 45% and prolonged median overall survival by 6 days: an approximately 30% increase. The FUS-mediated BBB opening increased the brain tumor-to-serum ratio of etoposide by 3.5-fold and increased the etoposide concentration in brain tumor tissue by 8-fold compared with treatment without ultrasound. CONCLUSIONS: The current study demonstrates that BBB opening with FUS increases intratumoral delivery of etoposide in the brain, resulting in local control and overall survival benefits.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Barrera Hematoencefálica/fisiología , Neoplasias Encefálicas/tratamiento farmacológico , Etopósido/administración & dosificación , Glioblastoma/tratamiento farmacológico , Ultrasonografía Intervencional/métodos , Animales , Antineoplásicos Fitogénicos/análisis , Barrera Hematoencefálica/diagnóstico por imagen , Neoplasias Encefálicas/química , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Cromatografía Liquida , Medios de Contraste/administración & dosificación , Progresión de la Enfermedad , Etopósido/análisis , Glioblastoma/química , Glioblastoma/diagnóstico por imagen , Glioblastoma/mortalidad , Imagen por Resonancia Magnética , Masculino , Ratones , Microburbujas , Sonicación , Espectrometría de Masas en Tándem
12.
Sci Rep ; 11(1): 6521, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33753753

RESUMEN

Drug delivery in diffuse intrinsic pontine glioma is significantly limited by the blood-brain barrier (BBB). Focused ultrasound (FUS), when combined with the administration of microbubbles can effectively open the BBB permitting the entry of drugs across the cerebrovasculature into the brainstem. Given that the utility of FUS in brainstem malignancies remains unknown, the purpose of our study was to determine the safety and feasibility of this technique in a murine pontine glioma model. A syngeneic orthotopic model was developed by stereotactic injection of PDGF-B+PTEN-/-p53-/- murine glioma cells into the pons of B6 mice. A single-element, spherical-segment 1.5 MHz ultrasound transducer driven by a function generator through a power amplifier was used with concurrent intravenous microbubble injection for tumor sonication. Mice were randomly assigned to control, FUS and double-FUS groups. Pulse and respiratory rates were continuously monitored during treatment. BBB opening was confirmed with gadolinium-enhanced MRI and Evans blue. Kondziela inverted screen testing and sequential weight lifting measured motor function before and after sonication. A subset of animals were treated with etoposide following ultrasound. Mice were either sacrificed for tissue analysis or serially monitored for survival with daily weights. FUS successfully caused BBB opening while preserving normal cardiorespiratory and motor function. Furthermore, the degree of intra-tumoral hemorrhage and inflammation on H&E in control and treated mice was similar. There was also no difference in weight loss and survival between the groups (p > 0.05). Lastly, FUS increased intra-tumoral etoposide concentration by more than fivefold. FUS is a safe and feasible technique for repeated BBB opening and etoposide delivery in a preclinical pontine glioma model.


Asunto(s)
Barrera Hematoencefálica/efectos de los fármacos , Neoplasias del Tronco Encefálico/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Glioma/tratamiento farmacológico , Animales , Transporte Biológico/efectos de los fármacos , Tronco Encefálico/diagnóstico por imagen , Tronco Encefálico/efectos de los fármacos , Neoplasias del Tronco Encefálico/diagnóstico por imagen , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/patología , Modelos Animales de Enfermedad , Etopósido/farmacología , Azul de Evans/farmacología , Gadolinio/farmacología , Glioma/diagnóstico por imagen , Glioma/genética , Glioma/patología , Humanos , Imagen por Resonancia Magnética , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/farmacología , Puente/diagnóstico por imagen , Puente/efectos de los fármacos , Proteínas Proto-Oncogénicas c-sis/genética , Proteínas Proto-Oncogénicas c-sis/farmacología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/farmacología , Ultrasonografía
13.
Aging (Albany NY) ; 12(18): 17930-17947, 2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32759461

RESUMEN

Recent reports have indicated the role of highly expressed methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) enzyme in cancers, showing poor survival; however, detailed mechanistic insight of metabolic functions of MTHFD2 have not been well-defined. Therefore, we aimed to examine the metabolic functions and cellular reprograming potential of MTHFD2 in lung cancer (LCa). In this study, we initially confirmed the expression levels of MTHFD2 in LCa not only in tissue and OncomineTM database, but also at molecular levels. Further, we reprogrammed metabolic activities in these cells through MTHFD2 gene knockdown via lentiviral transduction, and assessed their viability, transformation and self-renewal ability. In vivo tumorigenicity was also evaluated in NOD/SCID mice. Results showed that MTHFD2 was highly expressed in stage-dependent LCa tissues as well in cell lines, A549, H1299 and H441. Cellular viability, transformation and self-renewal abilities were significantly inhibited in MTHFD2-knockdown LCa cell lines. These cells also showed suppressed tumor-initiating ability and reduced tumor size compared to vector controls. Under low oxygen tension, MTHFD2-knockdown groups showed no significant increase in sphere formation, and hence the stemness. Conclusively, the suppressed levels of MTHFD2 is essential for cellular metabolic reprogramming leading to inhibited LCa growth and tumor aggressiveness.

14.
Artículo en Zh | MEDLINE | ID: mdl-19141190

RESUMEN

OBJECTIVE: To observe the changing spectrum of the pathogenic bacteria during seven-day antibiotics targeted therapy in an intensive care unit (ICU). METHODS: In a group of 100 patients of hospital-acquired pneumonia (HAP) with identified pathogenic bacteria undergoing antibiotic treatment according to susceptibility test, the changes in the species of the pathogens and their ratio in their sputum specimens were studied, and the relationship were analyzed the characteristic between the changes and the age, the time of medication and the length of stay. RESULTS: Among all the bacterial isolates (n=295) in ICU, the percentage of Gram-negative bacillus was 62.4% (184/295). The prevalent causative microorganisms isolated were Pseudomonas aeruginosa 22.4% (66/295), MRSA/MRSE 20.7% (61/295) and Acinetobacter spp. 10.5% (31/295). When one or more than one potent antibiotic in accord with the result of sensitivity test, change in ratio of pathogens occurred in 160, and change in species in 126. When the use of antibiotics was prolonged, the change in the former became less often. The change in ratio was less in 3-5 days than that of 6-7 days, the ratio was 72.7%, 62.5%, 60.0% (P<0.01) respectively on the 3rd day, the 4th day and the 5th day, showing that susceptible pathogenic bacteria became less gradually, indicating that the treatment was effective . However, the change in species of pathogenic bacteria began more obvious, and it was more predominant on the 6th day and the 7th day, which was 66.0%, 77.1% (P<0.01) respectively, showing emergence of new non-susceptible pathogenic bacteria. With increase in the use of different antibiotics, the species of pathogenic bacteria showed to increase an increasing tendency of change. When Gram-negative bacillus infection was treated, antibiotic resistant bacteria such as Candida albicans and MRSA usually appeared. But when Gram-positive bacillus infections were treated, Candida albicans, Pseudomonas aeruginosa and Enterobacter cloacae readily appeared. There was relationship between the change in pathogenic bacteria and age, and the length of stay of the patients. The more older in age and the longer the length of stay, the change in pathogenic bacteria was more predominant. CONCLUSION: New antibiotic resistant pathogenic bacteria appears after seven-day antibiotic-targeted therapy in ICU. The change of species of pathogenic bacteria is related to the duration and type of using antibiotic, and also the age and length of stay. The longer time of use and the more different types of antibiotic used, the older in age and the longer in length of stay, the change in species of pathogenic bacteria is more predominant. Monitoring the dynamic change of pathogenic bacteria, adjusting the antibiotic promptly and rational use of antibiotics are very important to decrease the change in species and antibiotic resistance of the bacteria.


Asunto(s)
Antibacterianos/uso terapéutico , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Neumonía Bacteriana/tratamiento farmacológico , Neumonía Bacteriana/microbiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Enfermedad Crítica , Farmacorresistencia Bacteriana , Femenino , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Esputo/microbiología , Adulto Joven
15.
Aging Dis ; 10(3): 483-496, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31164994

RESUMEN

Diabetes mellitus (DM) is well-known to exert complications such as retinopathy, cardiomyopathy and neuropathy. However, in recent years, an elevated osteoarthritis (OA) complaints among diabetics have been observed, portending the risk of diabetic OA. Since formation of advanced glycation end products (AGE) is believed to be the etiology of various diseases under hyperglycemic conditions, we firstly established that streptozotocin-induced DM could potentiate the development of OA in C57BL/6J mouse model, and further explored the intra-articularly administered adipose-derived stem cell (ADSC) therapy focusing on underlying AGE-associated mechanism. Our results demonstrated that hyperglycemic mice exhibited OA-like structural impairments including a proteoglycan loss and articular cartilage fibrillations in knee joint. Highly expressed levels of carboxymethyl lysine (CML), an AGE and their receptors (RAGE), which are hallmarks of hyperglycemic microenvironment were manifested. The elevated oxidative stress in diabetic OA knee-joint was revealed through increased levels of malondialdehyde (MDA). Further, oxidative stress-activated nuclear factor kappa B (NF-κB), the marker of proinflammatory signalling pathway was also accrued; and levels of matrix metalloproteinase-1 and 13 were upregulated. However, ADSC treatment attenuated all OA-like changes by 4 weeks, and dampened levels of CML, RAGE, MDA, NF-κB, MMP-1 and 13. These results suggest that during repair and regeneration, ADSCs inhibited glycation-mediated inflammatory cascade and rejuvenated cartilaginous tissue, thereby promoting knee-joint integrity in diabetic milieu.

16.
J Diabetes Res ; 2018: 7806435, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30046616

RESUMEN

High morbidity and mortality of diabetes mellitus (DM) throughout the human population is a serious threat which needs to be addressed cautiously. Type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) are most prevalent forms. Disruption in insulin regulation and resistance leads to increased formation and accumulation of advanced end products (AGEs), which further enhance oxidative and nitrosative stress leading to microvascular (retinopathy, neuropathy, and nephropathy) and macrovascular complications. These complications affect the normal function of organ and tissues and may cause life-threatening disorders, if hyperglycemia persists and improperly controlled. Current and traditional treatment procedures are only focused on to regulate the insulin level and do not cure the diabetic complications. Pancreatic transplantation seemed a viable alternative; however, it is limited due to lack of donors. Cell-based therapy such as stem cells is considered as a promising therapeutic agent against DM and diabetic complications owing to their multilineage differentiation and regeneration potential. Previous studies have demonstrated the various impacts of both pluripotent and multipotent stem cells on DM and its micro- and macrovascular complications. Therefore, this review summarizes the potential of stem cells to treat DM and its related complications.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Trasplante de Células Madre , Células Madre/citología , Animales , Linaje de la Célula , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/terapia , Retinopatía Diabética/fisiopatología , Retinopatía Diabética/terapia , Humanos , Hiperglucemia/complicaciones , Insulina/metabolismo , Resistencia a la Insulina , Ratones , Microcirculación , Estrés Nitrosativo , Estrés Oxidativo , Transducción de Señal , Cicatrización de Heridas
17.
Cancers (Basel) ; 10(11)2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445793

RESUMEN

Cancer is a leading cause of mortality and a major public health problem worldwide. For biological therapy against cancer, we previously developed a unique immunotherapeutic platform by combining mesenchymal stem cells with an antigen-specific protein vaccine. However, this system possesses a few limitations, such as improperly immortalized mesenchymal stem cells (MSCs) along with transfected oncogenic antigens in them. To overcome the limitations of this platform for future clinical application, we freshly prepared primary adipose-derived stem cells (ADSCs) and modified the E7' antigen (E7') as a non-oncogenic protein. Either subcutaneously co-inoculated with cancer cells or systemically administered after tumor growth, ADSC labeled with enhanced green fluorescent protein (eGFP) and combined with modified E7' (ADSC-E7'-eGFP) cells showed significant antitumor activity when combined with the protein vaccine in both colon and lung cancer in mice. Specifically, this combined therapy inhibited tumor through inducing cell apoptosis. The significantly reduced endothelial cell markers, CD31 and vascular endothelial growth factor (VEGF), indicated strongly inhibited tumor angiogenesis. The activated immune system was demonstrated through the response of CD4+ T and natural killer (NK) cells, and a notable antitumor activity might be contributed by CD8+ T cells. Conclusively, these evidences imply that this promising immunotherapeutic platform might be a potential candidate for the future clinical application against cancer.

19.
Stem Cells Dev ; 25(23): 1833-1842, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27596042

RESUMEN

Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.


Asunto(s)
Tejido Adiposo/citología , Carcinogénesis/patología , Carcinoma Pulmonar de Lewis/patología , Interleucina-6/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Neoplásicas/patología , Comunicación Paracrina , Animales , Carcinogénesis/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Proliferación Celular , Femenino , Janus Quinasa 2/metabolismo , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-27143981

RESUMEN

Antrodia camphorata has previously demonstrated the efficacy in treating cancer and anti-inflammation. In this study, we are the first to evaluate Antrodia camphorata alcohol extract (ACAE) for osteoporosis recovery in vitro with preosteoblast cells (MC3T3-E1) and in vivo with an osteoporosis mouse model established in our previous studies, ovariectomized senescence accelerated mice (OVX-SAMP8). Our results demonstrated that ACAE treatment was slightly cytotoxic to preosteoblast at 25 µg/mL, by which the osteogenic gene expression (RUNX2, OPN, and OCN) was significantly upregulated with an increased ratio of OPG to RANKL, indicating maintenance of the bone matrix through inhibition of osteoclastic pathway. Additionally, evaluation by Alizarin Red S staining showed increased mineralization in ACAE-treated preosteoblasts. For in vivo study, our results indicated that ACAE inhibits bone loss and significantly increases percentage bone volume, trabecular bone number, and bone mineral density in OVX-SAMP8 mice treated with ACAE. Collectively, in vitro and in vivo results showed that ACAE could promote osteogenesis and prevent bone loss and should be considered an evidence-based complementary and alternative medicine for osteoporosis therapy through the maintenance of bone health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA