Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36901663

RESUMEN

Single-leg landing is one of the maneuvers that has been linked to non-contact anterior cruciate ligament (ACL) injuries, and wearing knee braces has been shown to reduce ACL injury incidence. The purpose of this study was to determine whether wearing a knee brace has an effect on muscle force during single-leg landings at two heights through musculoskeletal simulation. Eleven healthy male participants, some braced and some non-braced were recruited to perform single-leg landings at 30 cm and 45 cm. We recorded the trajectories and ground reaction forces (GRF) using an eight-camera motion capture system and a force platform. The captured data were imported into the generic musculoskeletal model (Gait2392) in OpenSim. Static optimization was used to calculate the muscle forces. The gluteus minimus, rectus femoris, vastus medialis, vastus lateralis, vastus medialis medial gastrocnemius, lateral gartrocnemius, and soleus muscle forces were all statistically significant different between the braced and non-braced participants. Simultaneously, increasing the landing height significantly affected the gluteus maximums, vastus medialis, and vastus intermedia muscle forces. Our findings imply that wearing a knee brace may alter muscle forces during single-leg landings, preventing ACL injuries. Additionally, research demonstrates that people should avoid landing from heights due to the increased risk of knee injuries.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Traumatismos de la Rodilla , Masculino , Humanos , Pierna/fisiología , Extremidad Inferior/fisiología , Músculo Esquelético/fisiología , Lesiones del Ligamento Cruzado Anterior/prevención & control , Traumatismos de la Rodilla/prevención & control , Articulación de la Rodilla/fisiología
2.
Polymers (Basel) ; 13(4)2021 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-33671769

RESUMEN

Poly (lactic acid) (PLA) has a broad perspective for manufacturing green thermoplastic products by thermoforming for its biodegradable properties. The mechanical behaviour of PLA has been demonstrated by its strong dependence on temperature and strain rate at biaxial deformation. A nonlinear viscoelastic model by the previous study was employed in a thermoforming process used for food packaging. An optimisation approach was developed by achieving the optimal temperature profile of specimens by defining multiple heating zones based on numerical modelling with finite element analysis (FEA). The forming process of a PLA product was illustrated by modelling results on shape evolution and biaxial strain history. The optimal temperature profile was suggested in scalloped zones to achieve more even thickness distribution. The sensitivity of the optimal results was addressed by checking the robustness under perturbation.

3.
Polymers (Basel) ; 13(6)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809921

RESUMEN

Stretch blow moulding (SBM) has been employed to manufacture bioresorbable vascular scaffold (BVS) from poly (l-lactic acid) (PLLA), whilst an experience-based method is used to develop the suitable processing conditions by trial-and-error. FEA modelling can be used to predict the forming process by the scientific understanding on the mechanical behaviour of PLLA materials above the glass transition temperature (Tg). The applicability of a constitutive model, the 'glass-rubber' (GR) model with material parameters from biaxial stretch was examined on PLLA sheets replicating the biaxial strain history of PLLA tubes during stretch blow moulding. The different stress-strain relationship of tubes and sheets under equivalent deformation suggested the need of re-calibration of the GR model for tubes. A FEA model was developed for PLLA tubes under different operation conditions, incorporating a virtual cap and rod to capture the suppression of axial stretch. The reliability of the FEA modelling on tube blowing was validated by comparing the shape evolution, strain history and stress-strain relationship from modelling to the results from the free stretch blow test.

4.
Polymers (Basel) ; 13(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34685312

RESUMEN

Presbyopia is a common eye disorder among aged people which is attributed to the loss of accommodation of the crystalline lens due to the increasing stiffness. One of the potential techniques to correct presbyopia involves removing the lens substance inside the capsule and replacing it with an artificial lens. The development of such devices, e.g., accommodating intraocular lenses (AIOLs), relies on the understanding of the biomechanical behaviour of the lens capsule and the essential design verification ex vivo. To mimic the eye's dynamic focusing ability (accommodation), an artificial lens capsule (ALC), from silicone rubber accompanied by a lens radial stretching system (LRSS) was developed. The ALC was manufactured to offer a dimension and deforming behaviour replicating the human lens capsule. The LRSS was calibrated to provide a radial stretch simulating the change of diameter of capsules during accommodating process. The biomechanical function of the ALC was addressed by studying its evolution behaviour and reaction force under multiaxial stretch from the LRSS. The study highlighted the convenience of this application by performing preliminary tests on prototypes of ophthalmic devices (e.g., AIOLs) to restore accommodation.

5.
Polymers (Basel) ; 13(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34833214

RESUMEN

A synthetic material of silicone rubber was used to construct an artificial lens capsule (ALC) in order to replicate the biomechanical behaviour of human lens capsule. The silicone rubber was characterised by monotonic and cyclic mechanical tests to reveal its hyper-elastic behaviour under uniaxial tension and simple shear as well as the rate independence. A hyper-elastic constitutive model was calibrated by the testing data and incorporated into finite element analysis (FEA). An experimental setup to simulate eye focusing (accommodation) of ALC was performed to validate the FEA model by evaluating the shape change and reaction force. The characterisation and modelling approach provided an insight into the intrinsic behaviour of materials, addressing the inflating pressure and effective stretch of ALC under the focusing process. The proposed methodology offers a virtual testing environment mimicking human capsules for the variability of dimension and stiffness, which will facilitate the verification of new ophthalmic prototype such as accommodating intraocular lenses (AIOLs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA