Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biol Reprod ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38936833

RESUMEN

Nuclear receptor NR4A1 is a key factor in glycolipid metabolism and steroidogenesis, while lipid droplets serve as crucial dynamic organelles for lipid metabolism in luteal cells. To investigate the effects of NR4A1 on lipid droplet metabolism and progesterone (P4) synthesis in goat corpus luteum in vitro, luteal cells from the middle-cyclic corpus luteum were isolated and treated with Cytosporone B (CSNB, an agonist) or siRNA of NR4A1. Results showed that both low (1 µM) and high (50 µM) concentrations of CSNB promoted lipid droplet accumulation, while NR4A1 knockdown reduced lipid droplet content. CSNB increased while siNR4A1 decreased total cholesterol content; however, CSNB and siNR4A1 did not change triglyceride content. CSNB increased the expression of perilipins at mRNA and protein levels, also increased LDLR, SCARB1, SREBFs, and HMGCR mRNA abundance. Treatment with siNR4A1 revealed opposite results of CSNB, except for HMCGR and SREBF2. For steroidogenesis, 1 µM CSNB increased, but 50 µM CSNB inhibited P4 synthesis, NR4A1 knockdown also reduced the P4 level. Further analysis demonstrated that 1 µM CSNB increased the protein levels of StAR, HSD3B, and P-HSL, while 50 µM CSNB decreased StAR, HSD3B, and CYP11A1 protein levels. Moreover, 50 µM CSNB impaired active mitochondria, reduced the BCL2, and increased DRP1, Caspase 3, and cleaved-Caspase 3 protein levels. siNR4A1 consistently downregulated the P-HSL/HSL ratio and the steroidogenic protein levels. In conclusion, NR4A1-mediated lipid droplets are involved in the regulation of progesterone synthesis in goat luteal cells.

2.
J Sci Food Agric ; 104(7): 4342-4353, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38328855

RESUMEN

BACKGROUND: Non-nutritive sweeteners (NNS) are commonly used in sweetened foods and beverages; however their role in metabolic regulation is still not clear. In this experiment, we used guinea pigs as an animal model to study the effect of NNS on body growth and intestinal health by modifying gut microbiota and hypothalamus-related proteins. RESULTS: For a 28-day feeding experiment a total of 40 guinea pigs were randomly divided into four groups, one control (CN) group and three treatments, in which three NNS were added to the diet: rebaudioside A (RA, 330 mg kg-1), sodium saccharin (SS, 800 mg kg-1), and sucralose (TGS, 167 mg kg-1), respectively. The TGS group exhibited significantly reduced food consumption in comparison with the CN group (P < 0.05) whereas the RA group showed increased food consumption in comparison with the CN group (P < 0.05). Notably, Taste receptor type 1 subunit 2 (T1R2) expression in the hypothalamus was significantly higher in the RA group than in the CN group (P < 0.05). The mRNA expressions of appetite-stimulated genes arouti-related neuropeptide (AGRP), neuropeptide Y (NPY), and thyroid stimulating hormone (TSHB) were significantly higher than those in the CN group (P < 0.05) but mRNA expressions of appetite-suppressed genes tryptophan hydroxylase 2(THP2) were significantly lower in the TGS group (P < 0.05). Furthermore, NNS in the guinea pig diets (RA, SS, TGS) significantly increased the relative abundance of Muribaculaceae but decreased the relative abundance of Clostridia_vadin BB60 in comparison with the CN group (P < 0.05). We also found that dietary supplementation with RA also significantly altered the relative abundance of Lactobacillus. CONCLUSION: Our finding confirmed that dietary supplementation with RA and TGS affected body growth and intestinal health by modulating hypothalamic RNA profiles and ileum microbiota, suggesting that NNS should be included in guinea-pig feeding. © 2024 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Edulcorantes no Nutritivos , Cobayas , Animales , Peso Corporal , Íleon , ARN Mensajero
3.
Reproduction ; 165(4): 431-443, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745011

RESUMEN

In brief: The apoptosis of granulosa cells (GCs) is the main reason for porcine follicular atresia. This study provides a novel mechanism for peroxynitrite anion-mediated GC apoptosis and follicular atresia in porcine ovary. Abstract: Granulosa cells play a crucial role in the development of follicles, and their cell apoptosis in the porcine ovary is a major contributor to follicular atresia. Here, we provide a new mechanism for follicular atresia by describing a crucial mechanism by which peroxynitrite anion (OONO-) may cause GC death. We discovered that nitric oxide, oxidative stress level, and OONO- were positively correlated with porcine follicular atresia, which was accompanied by high expression of matrix metalloproteinase 2 (MMP2) and MMP9. We created a model of OONO--induced apoptosis in GCs and discovered that OONO- could boost the expression of MMP2 and MMP9 and increase the expression of pro-apoptotic proteins and DNA damage. Furthermore, by inhibiting the activities of MMP2 and MMP9, we found that SB-3CT (a specific inhibitor for MMP2 and MMP9) alleviated the decrease in cell survival rates and DNA damage caused by OONO-, which may have been impacted by reducing the cleavage of PARP1 by MMP2 and MMP9. Therefore, our findings imply that OONO- can cause DNA damage to GCs, participating in mediating the expression of pro-apoptotic proteins and inhibiting DNA repair by preventing the activity of PARP1 through MMP2 and MMP9. These results help explain how OONO-/MMP2/MMP9 affects porcine follicular atresia and GC apoptosis.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Animales , Femenino , Porcinos , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ácido Peroxinitroso/metabolismo , Atresia Folicular/metabolismo , Células de la Granulosa/metabolismo , Apoptosis , Daño del ADN , Proteínas Reguladoras de la Apoptosis/metabolismo
4.
Reproduction ; 166(6): 451-458, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37855439

RESUMEN

In brief: Genistein contributes to granulosa cell (GC) survival by two routes: one is that genistein induced p-AMPK and inhibited p-mTOR, which induces LC3 activation and autophagy; the other is that genistein inhibited caspase-3 and its cleavage, which induces PARP1 activation and PARylation. Abstract: Genistein is an isoflavone which is beneficial for health, but little is known regarding its function on granulosa cell fate during follicular atresia. In the present study, we established an in vitro model of porcine follicular granulosa cell apoptosis by serum deprivation and showed that treatments with 1 µM and 10 µM genistein significantly reduced the apoptotic rate of granulosa cells compared to the blank control (P < 0.05). These results suggest that genistein at micromolar levels alleviates serum deprivation-induced granulosa cell apoptosis, and the ameliorative effect of genistein on granulosa cell apoptosis is likely to be able to inhibit nutrient depletion-induced follicular atresia. Further experimental results revealed that the expression of the autophagic marker protein LC3II in 100 nM-10 µM genistein treatment increased in a dose-dependent manner and was higher than the control (P < 0.05). Genistein also dose dependently promoted the phosphorylation of AMPK (adenosine 5'-monophosphate-activated protein kinase) in granulosa cells. Poly(ADP-ribose) (pADPr) formation in genistein-treated groups was also notably higher than in the controls (P < 0.05). Collectively, genistein alleviates serum deprivation-induced granulosa cells in vitro through enhancing autophagy, which involving AMPK activation and PARylation signaling. However, further study should be carried out to investigate the role of the aforementioned signaling on this process.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Genisteína , Femenino , Animales , Porcinos , Genisteína/farmacología , Genisteína/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Atresia Folicular/fisiología , Células de la Granulosa/metabolismo , Apoptosis
5.
Endocr J ; 69(1): 23-33, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34456194

RESUMEN

Chronic stress affects the reproductive health of mammals; however, the impact of adrenocorticotropin hormone (ACTH) level elevation during chronic stress on the reproduction of weaned sows remains unclear. In this study, nine weaned sows with the same parturition date were randomly divided into control group (n = 4) and ACTH group (n = 5). Each group received intravenous administration of ACTH three times daily for 7 days. Blood samples were collected every 3 h after injection. A radioimmunoassay was used to measure the concentrations of cortisol, luteinizing hormone (LH), follicle-stimulating hormone (FSH), progesterone (P4) and estradiol-17ß (E2) in the blood. Estrus was determined according to changes in the vulva and the boar contact test. The mRNA expressions of glucocorticoid receptor, FSH receptor, LH receptor (LHR) in the corpus luteum (CL) were detected by qRT-PCR. The results showed that ACTH administration substantially delayed the initiation of estrus and the pre-ovulatory LH peak. The sows of control group ovulated within 10 days and the ovulation rate was 100%, while it was 60% in the ACTH group. Two sows of ACTH group showed pseudo-estrus. The E2 concentrations significantly decreased in the ACTH group at 36 h, 42 h and 66 h of the experimental period. The P4 concentrations in the ACTH group significantly decreased at 132, 138, and 147 h of the experimental period. ACTH significantly reduced the LHR mRNA expression in CLs. In conclusion, long-term repeated ACTH administration affects the endocrinology, estrus onset, and ovarian function of weaned sows.


Asunto(s)
Hormona Adrenocorticotrópica , Estro , Hormona Adrenocorticotrópica/farmacología , Animales , Estradiol , Estro/fisiología , Femenino , Hormona Luteinizante , Mamíferos/metabolismo , Ovulación , Progesterona , Porcinos , Destete
6.
J Anim Physiol Anim Nutr (Berl) ; 106(6): 1321-1332, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34741341

RESUMEN

Mulberry-leaf flavonoids (MF), extracted from mulberry leaves, exert antioxidant and hypolipidemic effects. The purpose of this experimental study was to investigate the effects of dietary MF on the ovarian function and liver lipid metabolism of aged breeder hens. We used 270 (60-weeks-old) Qiling breeder hens randomly assigned in 3 treatments with supplemental dietary MF doses (0, 30, 60 mg/kg). The results showed that dietary MF significantly improved the egg-laying rate, followed by the reduced feed conversion rate (FCR) (p < 0.05). However, there is no obvious difference in hatchability and fertilised eggs hatchability among the three groups (p > 0.05). The level of T-CHO, LDL-C and AKP in serum was reduced, and the HDL-C concentrations were increased by dietary MF (p < 0.05). MF treatment also improved the antioxidant capacity and reduced the apoptotic index of the ovary (p < 0.05). Additionally, dietary MF significantly increased the serum estradiol (E2) levels (p < 0.05) and the transcription level of CYP19A1 and LHR in the ovary (p < 0.05). Dietary MF enhanced fatty acid ß-oxidation in the liver via up-regulating the mRNA expressions of PPARα and CPT-I (p < 0.05). Moreover, the HMF group significantly decreased mRNA expressions of SREBP-1c (p < 0.05) and increased mRNA expressions of ERα, VTG-Ⅱ and ApoB in the liver (p < 0.05). In conclusion, dietary MF could improve the reproduction performance of aged breeder hens through improving ovary function and hepatic lipid metabolism.


Asunto(s)
Morus , Animales , Femenino , Alimentación Animal/análisis , Pollos/fisiología , Metabolismo de los Lípidos , Flavonoides/farmacología , Antioxidantes/metabolismo , Dieta , Óvulo , Hígado/metabolismo , Hojas de la Planta/metabolismo , Suplementos Dietéticos/análisis , ARN Mensajero/metabolismo
7.
Endocr J ; 68(4): 387-398, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33441502

RESUMEN

Intermittent fasting, which can effectively reduce obesity and improve the related metabolic syndrome has become an exciting research area in recent years. Adipose tissue is pivotal in regulating the metabolism and determining the occurrence of obesity. In the current study, we aimed to investigate the effects of acute fasting (AF) on fat tissue. Mice were subjected to AF for 36 h, receiving normal chow (low-fat diet [LFD]) or a high-fat diet (HFD), with free ad libitum access to drinking water, and those fed on free-diet counterparts without fasting serveding as controls. We found that AF obviously reshaped the morphology of fat tissue (WAT) and promoted the beiging of white adipose tissue in both LFD- and HFD-fed mice. AF principally improved the lipid metabolism, and increased the M2- polarization of macrophages in WAT white fat tissue of HFD-fed mice. Interestingly, we found that AF dramatically upregulated Sirt5 expression levels and fat tissue succinylation, suggesting that AF-induced beneficial effects on fat might occur via the regulation of Sirt5 levels and altered succinylation in fatty tissues. Our study clearly showed the remodeling function of adipose tissue during AF; in terms of mechanism, the regulation of succinylation levels by AF might provide new insights into the mechanism(s) underlying the improvement in fat metabolism by energy restriction.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta con Restricción de Grasas , Dieta Alta en Grasa , Ayuno/metabolismo , Metabolismo de los Lípidos/fisiología , Animales , Masculino , Ratones
8.
J Sci Food Agric ; 101(5): 2156-2167, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32981085

RESUMEN

BACKGROUND: Stevioside (STE) is a widely used sweetener. Despite the fact that chickens are insensitive to sweetness, dietary STE supplementation could increase the feed intake of broiler chickens. Stevioside might regulate the feeding behavior through functional mechanisms other than its high-potency sweetness. The present study was aimed to elucidate the potential sweetness-independent mechanism of an STE-induced orexigenic effect using the broiler chicken and considering the hypothalamic transcriptome profile and gut microbiome. RESULTS: The analysis of RNA-Seq identified 398 differently expressed genes (160 up-regulated and 238 down-regulated) in the hypothalamus of the STE-supplemented group compared with the control group. Cluster analysis revealed several appetite-related genes were differentially expressed, including NPY, NPY5R, TSHB, NMU, TPH2, and DDC. The analysis of 16S rRNA sequencing data also indicated that dietary STE supplementation increased the relative abundance of Lactobacillales, Bacilli, Lactobacillus, and Lactobacillaceae. Meanwhile, the proportion of Ruminococcaceae, Lachnospiraceae, Clostridia, and Clostridiales was decreased after dietary supplementation with STE. CONCLUSION: Dietary STE supplementation promoted feed intake through the regulation of the hypothalamic neuroactive ligand-receptor interaction pathway and the alteration of intestinal microbiota composition. This study provides valuable information about the sweetness-independent mechanism of the STE-induced orexigenic effect using the broiler chicken (which is insensitive to sweetness) as the animal model. © 2020 Society of Chemical Industry.


Asunto(s)
Pollos/microbiología , Diterpenos de Tipo Kaurano/metabolismo , Microbioma Gastrointestinal , Glucósidos/metabolismo , Hipotálamo/metabolismo , Alimentación Animal/análisis , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Pollos/genética , Pollos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Ingestión de Alimentos , Conducta Alimentaria , Femenino , Masculino , Transcriptoma
9.
FASEB J ; 33(3): 3264-3278, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30423262

RESUMEN

Stress is known to cause corpus luteum (CL) dysfunction, and stress hormones play a critical role in this process. However, the mechanism remains unclear. In this study, weaned sows were injected with synthetic adrenocorticotropic hormone (ACTH) for 7 d; whole-genome bisulfite sequencing (WGBS) and RNA sequencing was used respectively to investigate the systematic association between ACTH administration and DNA methylation in CL and its relationship to gene expression. Results showed that ACTH treatment significantly increased the concentrations of cortisol ( P < 0.05). The genome-wide DNA methylation maps of CL were provided, and the global analysis showed the difference between the 2 groups exists in the chromosomes and feature regions of the genome. A total of 88,559 DMRs were identified and the most DMR-related genes were gathered in terms of metabolic biologic processes, and some DMR-related genes were involved in cellular differentiation. Nine differentially expressed genes were screened out of coexpressed genes and 4 DMR-associated genes that were also differentially expressed ( P < 0.05). In summary, our study firstly provides insight into the regulation of ACTH administration on genomic DNA methylation and gene expression in CL. We revealed a remarkable alteration of DNA methylation in CL caused by ACTH treatment, and identified 4 DMR-related genes that may be involved in the CL function under stress conditions.-Zhao, F., Wu, W., Wei, Q., Shen, M., Li, B., Jiang, Y., Liu, K., Liu, H. Exogenous adrenocorticotropic hormone affects genome-wide DNA methylation and transcriptome of corpus luteum in sows.


Asunto(s)
Hormona Adrenocorticotrópica/administración & dosificación , Cuerpo Lúteo/efectos de los fármacos , Cuerpo Lúteo/metabolismo , Metilación de ADN/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Hormona Adrenocorticotrópica/metabolismo , Animales , Epigénesis Genética/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Sus scrofa
10.
Reprod Fertil Dev ; 31(5): 1017-1032, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30836053

RESUMEN

3-nitropropionic acid (3-NPA) is known to be a mitochondrial toxin produced by plants and fungi, which may produce DNA damage in cells. However, studies of its reproductive toxicology are lacking. We know that poly(ADP-ribose) polymerase (PARP) plays an important role in a large variety of physiological processes and is involved in DNA repair pathways. The present study was therefore aimed at exploring the involvement of PARP-1 activation and cleavage after 3-NPA stimulation in female mice. We observed an increased number of atretic follicles and multi-oocyte follicles (MOFs) after treatment with 3-NPA and serum concentrations of 17ß-oestradiol and progesterone were significantly reduced. Our results provide evidence that PARP-1 cleavage and activational signals are involved in pathological ovarian processes stimulated by 3-NPA. In addition, total superoxide dismutase, glutathione peroxidase and catalase activities were significantly increased, whereas succinate dehydrogenase was decreased in a dose-dependent manner. Results from our in vitro study similarly indicated that 3-NPA inhibited the proliferation of mouse granulosa cells and increased apoptosis in a dose-dependent manner. In summary, 3-NPA induces granulosa cell apoptosis, follicle atresia and MOFs in the ovaries of female mice and causes oxidative stress so as to disrupt endogenous hormonal systems, possibly acting through PARP-1 signalling.


Asunto(s)
Células de la Granulosa/efectos de los fármacos , Nitrocompuestos/farmacología , Oocitos/efectos de los fármacos , Folículo Ovárico/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Propionatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Catalasa/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estradiol/sangre , Femenino , Glutatión Peroxidasa/metabolismo , Células de la Granulosa/metabolismo , Ratones , Oocitos/metabolismo , Folículo Ovárico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Progesterona/sangre , Superóxido Dismutasa/metabolismo
11.
J Reprod Dev ; 65(1): 7-17, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30333376

RESUMEN

Soy-based formula contains high concentrations of the isoflavone genistein. Genistein possesses estrogenic and tyrosine kinase inhibitory activity and interferes with cellular proliferation and development. To date, the acute and chronic effects of genistein on ovarian and uterine development have not been fully elucidated. In this study, mice at postnatal day 1 were subcutaneously injected with 100 mg/kg genistein for 10 consecutive days, and then their ovaries and uteri were collected on days 10, 21, and 90. Histological evaluation was performed after hematoxylin and eosin staining. The proliferating activity was indicated by the proliferating indicator protein Ki67. Results showed that the subcutaneous injection of genistein to neonatal mice induced the formation of multi-oocyte follicles and delayed the primordial follicle assembly in the ovaries. Genistein significantly enlarged the cross-sectional area of the uterine cavity and wall and disrupted the regularity between the uterine stroma and myometrium. Genistein exposure inhibited proliferative activity because fewer Ki67-positive nuclei were detected in ovarian and uterine cell populations than in the control. Furthermore, most ovaries from adult mice given neonatal genistein were without corpora lutea, and there appeared to be cystic follicles and hypertrophy of the theca, and cortical and medullary layers. Considering the high concentration of isoflavone in soy-based infant formulas and livestock feed, we suggest that the use of isoflavone-rich diets in humans and livestock receive closer examination.


Asunto(s)
Animales Recién Nacidos , Proliferación Celular/efectos de los fármacos , Genisteína/toxicidad , Ovario/efectos de los fármacos , Ovario/crecimiento & desarrollo , Útero/efectos de los fármacos , Útero/crecimiento & desarrollo , Animales , Femenino , Genisteína/administración & dosificación , Genisteína/análisis , Antígeno Ki-67/análisis , Ratones , Ovario/citología , Alimentos de Soja/análisis , Útero/citología
12.
Reprod Domest Anim ; 54(6): 864-872, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30972826

RESUMEN

Bisphenol A (BPA) is a chemical of high production volume that is used widely in many industries and is known as a xenooestrogen and anti-thyroid hormone endocrine disrupter. There is little information regarding the effects of BPA in the presence of thyroid hormone on porcine granulosa cell development. Thus, the primary granulosa cells were treated with thyroxine (T4, 10 nM), BPA (10 µM) or T4 plus BPA; we subsequently evaluated the effects of T4 or BPA on 17ß-estradiol synthesis, cellular proliferation and apoptosis. Our data showed that BPA significantly increased the accumulation of 17ß-estradiol and promoted granulosa cell proliferation, whereas T4 significantly decreased 17ß-estradiol and had no effect on cellular proliferation. In addition, it was noteworthy that T4 treatment induced apoptosis in porcine granulosa cells and BPA co-incubation attenuated T4-induced apoptosis as shown from flow cytometric assay analysis. We hypothesized that BPA attenuates T4-induced apoptosis by regulating 17ß-estradiol accumulation and oestrogen receptor-mediated signalling pathways. In conclusion, our results demonstrated that T4 affected 17ß-estradiol accumulation and induced cellular apoptosis, but did not affect granulosa cell proliferation. Exposure to BPA increased 17ß-estradiol accumulation, promoted granulosa cell proliferation and attenuated T4-induced apoptosis in porcine granulosa cells in vitro.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Células de la Granulosa/efectos de los fármacos , Ovario/efectos de los fármacos , Fenoles/toxicidad , Tiroxina/farmacología , Animales , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Estradiol/metabolismo , Femenino , Receptores de Estrógenos/efectos de los fármacos , Porcinos
13.
BMC Dev Biol ; 18(1): 15, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29940839

RESUMEN

BACKGROUND: Diabetes and hypothyroidism produce adverse effects on body weight and sexual maturity by inhibiting body growth and metabolism. The occurrence of diabetes is always accompanied with thyroid dysfunction. Thus, it is important to take hypo- or hyper-thyroidism into consideration when exploring the adverse effects caused by diabetes. Previous reports have found hypothyroidism inhibits testicular growth by delaying Sertoli cell differentiation and proliferation. Hence, by establishing a mouse model of diabetes combined with hypothyroidism, we provided evidence that poly glandular autoimmune syndrome affected testicular development and spermatogenesis. RESULTS: we mimicked polyglandular deficiency syndrome in both immature and prepubertal mice by induction of diabetes and hypothyroidism, which caused decreases in serum concentrations of testosterone and insulin like growth factor 1 (IGF-1). Such reduction of growth factor resulted in inhibition of testicular and epididymal development. Moreover, expressions of Claudin-11 were observed between Sertoli cells and disrupted in the testes of syndrome group mice. We also found reduced sperm count and motility in prepubertal mice. CONCLUSIONS: This mimicry of the diabetes and thyroid dysfunction, will be helpful to better understand the reasons for male infertility in diabetic-cum-hypothyroid patients.


Asunto(s)
Claudinas/metabolismo , Diabetes Mellitus/metabolismo , Hipotiroidismo/metabolismo , Túbulos Seminíferos/metabolismo , Espermatogénesis , Animales , Glucemia/metabolismo , Barrera Hematotesticular/patología , Peso Corporal , Diabetes Mellitus/sangre , Diabetes Mellitus/patología , Epidídimo/patología , Femenino , Hipotiroidismo/sangre , Hipotiroidismo/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Metimazol/administración & dosificación , Ratones Endogámicos ICR , Tamaño de los Órganos , Motilidad Espermática , Estreptozocina/administración & dosificación , Testosterona/sangre
14.
Reprod Fertil Dev ; 29(6): 1184-1193, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27169499

RESUMEN

The aim of the present study was to investigate the effects of heat stress on heat shock protein (HSP) 70 expression and mitogen-activated protein kinase (MAPK) and protein kinase (PK) B signalling during prostaglandin F (PGF)-induced luteal regression. During pseudopregnancy, rats were exposed to heat stress (HS, 40°C, 2h) for 7 days and treated with PGF or physiological saline on Day 7; serum and ovaries were collected 0, 1, 2, 8 or 24h after PGF treatment. The early inhibitory effect of PGF on progesterone was reduced in HS rats. HSP70 expression in response to PGF was significantly enhanced in HS rats. PGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly greater in the HS group; however, HS rats exhibited elevated basal levels of phosphorylation of p38 MAPK, but not ERK1/2. PGF treatment increased expression of activating transcription factor (ATF) 3 at 2h, which was inhibited by heat stress. Evaluating PKB signalling revealed that phosphorylation of p-Akt (Thr308 and Ser473) was reduced at 8 and 24h after PGF treatment in both non-heat stress (NHS) and HS groups, but there were no significant differences between the HS and NHS groups at any of the time points. In conclusion, the present study provides further evidence that heat stress may enhance HSP70 and affect ERK1/2 and ATF3 expression, but not Akt activation, during PGF-induced luteal regression in pseudopregnant rats.


Asunto(s)
Factor de Transcripción Activador 3/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Trastornos de Estrés por Calor/metabolismo , Luteólisis/metabolismo , Sistema de Señalización de MAP Quinasas , Procesamiento Proteico-Postraduccional , Seudoembarazo/complicaciones , Animales , Cloprostenol/farmacología , Femenino , Trastornos de Estrés por Calor/sangre , Trastornos de Estrés por Calor/complicaciones , Trastornos de Estrés por Calor/patología , Inmunohistoquímica , Cinética , Luteólisis/sangre , Luteólisis/efectos de los fármacos , Luteolíticos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Fosforilación/efectos de los fármacos , Progesterona/antagonistas & inhibidores , Progesterona/sangre , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Organismos Libres de Patógenos Específicos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
Biol Reprod ; 95(6): 116, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27683267

RESUMEN

Saccharin sodium consumption is considered safe and beneficial, owing to its very intense sweetness without any associated calories, but supporting scientific data remain sparse and controversial. Herein, we demonstrate that dose-response relationships existed with regard to administration of saccharin or sucrose to mice for 35 days, and this association involved testis-expressed sweet-tasting molecules (taste receptor type 1 subunit 3 [T1R3]; G protein alpha-gustducin [Galpha]). Mouse body weights and testis weights in middle- and low-dose saccharin-treated groups were increased with up-expressions of molecules involved in testicular sweet taste and steroidogenic (middle saccharin: steroidogenic acute regulatory protein [StAR]; P450 cholesterol side-chain cleavage enzyme [CYP11A1]; 17-alpha-hydroxylase/C17,20-lyase [CYP17A1]; low saccharin: StAR). Moreover, a high-dose saccharin-related decline in reproductive hormone levels and injuries to testis and sperm were observed to be associated with suppression of testicular T1R3 and Galpha, as well as steroidogenic-related factors (StAR; 3-beta-hydroxysteroid dehydrogenase [3-beta-HSD]; CYP11A1; CYP17A1; 17-beta-hydroxysteroid dehydrogenase [17-beta-HSD]), and activation of cleaved caspase-3. However, abnormalities of the testis and sperm in high- and middle-dose sucrose-exposed mice were related to the increased-cleaved caspase-3, but independent of T1R3 and/or Galpha. Collectively, our results clearly suggest that saccharin-induced physiologic effects on testis are associated with testicular T1R3 and Galpha, which differed from sucrose. We hence call for a reassessment of the excessive use of sweeteners in daily life, especially artificial ones, considering their potential side effects.


Asunto(s)
Peso Corporal/efectos de los fármacos , Sacarina/farmacología , Espermatozoides/efectos de los fármacos , Sacarosa/farmacología , Edulcorantes/farmacología , Testículo/efectos de los fármacos , Animales , Glucemia/metabolismo , Caspasa 3/metabolismo , Forma de la Célula/efectos de los fármacos , Colesterol/sangre , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Relación Dosis-Respuesta a Droga , Ingestión de Alimentos/efectos de los fármacos , Estradiol/sangre , Hormona Luteinizante/sangre , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Motilidad Espermática/efectos de los fármacos , Espermatozoides/citología , Espermatozoides/metabolismo , Testículo/citología , Testículo/metabolismo , Testosterona/sangre , Transducina/metabolismo , Triglicéridos/sangre
16.
J Reprod Dev ; 61(3): 219-27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25797533

RESUMEN

Thyroid hormones and oxidative stress play significant roles in the normal functioning of the female reproductive system. Nitric oxide (NO), a free radical synthesized by nitric oxide synthases (NOS), participates in the regulation of thyroid function and is also a good biomarker for assessment of the oxidative stress status. Therefore, the purpose of this study was to investigate effects of thyroid hormones on uterine antioxidative status in young adult rats. Thirty immature female Sprague-Dawley rats were randomly divided into three groups: control, hypothyroid (hypo-T) and hyperthyroid (hyper-T). The results showed the body weights decreased significantly in both the hypo-T and hyper-T groups and that uterine weights were decreased significantly in the hypo-T group. The serum concentrations of total triiodothyronine (T3) and thyroxine (T4), as well as estradiol (E2), were significantly decreased in the hypo-T group, but increased in the hyper-T group. The progesterone (P4) concentrations in the hypo- and hyperthyroid rats markedly decreased. Immunohistochemistry results provided evidence that thyroid hormone nuclear receptor α/ß (TRα/ß) and three NOS isoforms were located in different cell types of rat uteri. The NO content and total NOS and inducible NOS (iNOS) activities were markedly diminished in the hypo-T group but increased in the hyper-T group. Moreover, the activities of both glutathione peroxidase (GSH-Px) and catalase (CAT) exhibited significant decreases and increases in the hypo-T and hyper-T groups, respectively. The malondialdehyde (MDA) contents in both the hypo-T and hyper-T groups showed a significant increase. Total superoxide dismutase (T-SOD) activity in the hypo- and hyper-T rats markedly decreased. In conclusion, these results indicated that thyroid hormones have an important influence on the modulation of uterine antioxidative status.


Asunto(s)
Antioxidantes/metabolismo , Estrés Oxidativo , Hormonas Tiroideas/metabolismo , Útero/metabolismo , Animales , Estradiol/metabolismo , Femenino , Radicales Libres , Hipertiroidismo/metabolismo , Hipotiroidismo/metabolismo , Inmunohistoquímica , Peroxidación de Lípido , Óxido Nítrico Sintasa de Tipo II/metabolismo , Radioinmunoensayo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Tiroxina/metabolismo , Triyodotironina/metabolismo
17.
Anim Nutr ; 18: 72-83, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39035983

RESUMEN

The development of skeletal muscle is a crucial factor in determining the meat yield and economic benefits of broiler production. Recent research has shown that mulberry leaves and their extracts can be used to significantly improve the growth performance of livestock and poultry. The present study aims to elucidate the mechanisms involved in the regulation of skeletal muscle development in broiler offspring by dietary mulberry-leaf flavonoids (MLF) supplementation from the perspective of maternal effect theory. A total of 270 Qiling broiler breeder hens were randomly assigned to 3 treatments with different doses of MLF (0, 30, 60 mg/kg) for 8 weeks before collecting their fertilized eggs. The chicken offspring at 13 and 19 d of embryonic stage, and from 1 to 28 d old after hatching were included in this study. The results showed that maternal supplementation increased the breast muscle weight and body weight of the offspring at the embryo and chick stages (P < 0.05). This was followed by increased cross-sectional area of pectoral muscle fibres at 14 d (P < 0.05). Further determination revealed a tendency towards increased serum levels of insulin-like growth factor 1 (IGF-1) (P = 0.092) and muscle fibre count (P = 0.167) at 1 d post-hatching following maternal MLF treatment, while serum uric acid (UA) was decreased at 14 d after hatching (P < 0.05). Moreover, maternal MLF supplementation significantly up-regulated the mRNA expression of the myogenic regulatory factor Myf5 in skeletal muscle at the both embryonic and growth stages (P < 0.05). The relative abundance of the downstream protein of BMPR2, Smad1 and p-Smad1/5/9 in the TGFß signalling pathway was significantly increased by maternal MLF treatment. Meanwhile, the increased expression of the target protein p-mTOR in the breast muscle of the offspring chicks is in accordance with the improved growth rate of the breast and the body. In conclusion, maternal MLF supplementation can promote muscle protein metabolism and muscle fibre development of chick embryos through upregulation of Myf5 expression and BMP/p-Smad1/5/9 axis, thereby improving growth performance of slow growing broiler.

18.
Poult Sci ; 103(5): 103570, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38484565

RESUMEN

The present study investigated the effects of fermented bamboo powder (FPB) on gut odorant receptors (OR), intestinal health, and growth performance of dwarf yellow-feathered broiler chickens. Six hundred (600) healthy 1-day-old chicks were randomly assigned into 2 groups, with 10 replicates consisting of 30 chicks each. The control group was fed a basal diet. In contrast, the experimental group was fed the basal diet supplemented with 1.0, 2.0, 4.0, and 6.0 g/kg FBP for 4 different phases, namely phase I (1-22 d), phase II (23-45 d), phase III (46-60 d), and phase IV (61-77 d), respectively. The first 2 phases were considered pretreatment (0-45 d), and the remaining were experimental (46-77 d) periods. The tissue samples were collected from phase IV. The chickens in the FBP supplementation group exhibited a significant increment in body weight gain, evisceration yield, breast, thigh, and liver weight, while also experiencing a decrease in the FCR (P < 0.05). Furthermore, the villus height, crypt depth, and villus area exhibited significant increases in the FBP group (P < 0.01). Additionally, the secretion levels of gut hormones such as glucagon-like peptide-1, peptide YY, cholecystokinin, and 5-hydroxytryptamine were significantly elevated in the serum, duodenum, jejunum, and ileum tissues in the FBP group (P < 0.05). The results of qRT-PCR indicated that ORs had responsive expression in the gizzard, proventriculus, and small intestine of chickens when fed with the FBP diet (P < 0.05). Notably, the expression of the COR1, COR2, COR4, COR6, COR8, COR9, OR52R1, OR51M1, OR1F2P, OR5AP2, and OR14J1L112 genes was stronger in the small intestines compared to the gizzard and proventriculus. In conclusion, these results suggest that the FPB plays a crucial role in growth performance, activation of ORs, and gut health and development.


Asunto(s)
Alimentación Animal , Pollos , Dieta , Suplementos Dietéticos , Distribución Aleatoria , Receptores Odorantes , Animales , Pollos/crecimiento & desarrollo , Pollos/fisiología , Alimentación Animal/análisis , Dieta/veterinaria , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Suplementos Dietéticos/análisis , Intestinos/efectos de los fármacos , Sasa/química , Relación Dosis-Respuesta a Droga , Fermentación , Polvos/química , Bambusa/química , Masculino
19.
Protein Cell ; 15(7): 512-529, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38167949

RESUMEN

Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility. Inadequate understanding of the ovulation drivers hinders PCOS intervention. Herein, we report that follicle stimulating hormone (FSH) controls follicular fluid (FF) glutamine levels to determine ovulation. Murine ovulation starts from FF-exposing granulosa cell (GC) apoptosis. FF glutamine, which decreases in pre-ovulation porcine FF, elevates in PCOS patients FF. High-glutamine chow to elevate FF glutamine inhibits mouse GC apoptosis and induces hormonal, metabolic, and morphologic PCOS traits. Mechanistically, follicle-development-driving FSH promotes GC glutamine synthesis to elevate FF glutamine, which maintain follicle wall integrity by inhibiting GC apoptosis through inactivating ASK1-JNK apoptotic pathway. FSH and glutamine inhibit the rapture of cultured murine follicles. Glutamine removal or ASK1-JNK pathway activation with metformin or AT-101 reversed PCOS traits in PCOS models that are induced with either glutamine or EsR1-KO. These suggest that glutamine, FSH, and ASK1-JNK pathway are targetable to alleviate PCOS.


Asunto(s)
Hormona Folículo Estimulante , Glutamina , Células de la Granulosa , Ovulación , Síndrome del Ovario Poliquístico , Animales , Femenino , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Glutamina/metabolismo , Ratones , Hormona Folículo Estimulante/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Humanos , Apoptosis/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Porcinos , Ratones Endogámicos C57BL
20.
Reproduction ; 146(6): 593-602, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24062568

RESUMEN

Poly(ADP-ribosylation), which occurs rapidly in cells following DNA damage and is regulated by poly (ADP-ribose) polymerase 1 (PARP1), is a post-translational modification of proteins playing a crucial role in many processes, including DNA repair and cell death. Although PARP1 has recently been implicated in a variety of physiological and pathological processes, its role in the process of follicular development and atresia is not yet completely defined. This study was designed to investigate the cellular expression pattern and immunolocalization of PARP1, cleaved PARP1, caspase 3, and cleaved caspase 3 in fetal, neonatal, and adult porcine ovaries. Our results showed that in fetal and neonatal pigs, PARP1 cleavage is involved in the process of oocyte nest breakdown, primordial follicle formation, and transition to primary follicles. The results of immunohistochemistry indicated that PARP1 cleavage was involved in the process of follicular development and atresia, which was in accordance with our previous study; however, it was noted that cleaved caspase 3 was mainly localized in and around the nucleus of apoptotic granulosa cells (GCs), whereas cleaved PARP1 was mainly localized in the nucleus of the apoptotic GCs. RIA data showed increased serum progesterone and estradiol concentrations with age after birth. Collectively, our findings suggest that the PARP1 signaling pathway is involved in oocyte nest breakdown and primordial follicle formation in fetal and neonatal porcine ovaries, but is different from follicular atresia in adult porcine ovaries that involves cellular apoptosis.


Asunto(s)
Feto/metabolismo , Ovario/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteolisis , Factores de Edad , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Caspasa 3/metabolismo , Estradiol/sangre , Femenino , Atresia Folicular/fisiología , Oocitos/metabolismo , Ovario/crecimiento & desarrollo , Progesterona/sangre , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA